Early expression of β- and γ-subunits of epithelial sodium channel during human airway development

被引:28
作者
Gaillard, D
Hinnrasky, J
Coscoy, S
Hofman, P
Matthay, MA
Puchelle, E
Barbry, P
机构
[1] CNRS, UPR411, IPMC, F-06560 Sophia Antipolis, France
[2] CHU Maison Blanche, INSERM, U514, Inst Federatif Rech 53, F-51092 Reims, France
[3] INSERM, U364, Tour Pasteur Fac Med, F-06107 Nice 02, France
[4] Univ Calif San Francisco, Inst Cardiovasc Res, San Francisco, CA 94143 USA
关键词
amiloride; human fetal development; airway epithelium; Clara cell; glandular cell;
D O I
10.1152/ajplung.2000.278.1.L177
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The amiloride-sensitive epithelial Na+ channel (ENaC) is an apical membrane protein complex involved in active Na+ absorption and in control of fluid composition in airways. There are no data reporting the distribution of its pore-forming alpha-, beta-, and gamma-subunits in the developing human lung. With use of two different rabbit polyclonal antisera raised against beta- and gamma-ENaC, immunohistochemical localization of the channel was performed in fetal (10-35 wk) and in adult human airways. Both subunits were detected after 17 wk of gestation on the apical domain of bronchial ciliated cells, in glandular ducts, and in bronchiolar ciliated and Clara cells. After 30 wk, the distribution of beta- and gamma-subunits was similar in fetal and adult airways. In large airways, the two subunits were detected in ciliated cells, in cells lining glandular ducts, and in the serous gland cells. In the distal bronchioles, beta- and gamma-subunits were identified in ciliated and Clara cells. Ultrastructural immunogold labeling confirmed the identification of beta- and gamma-ENaC proteins in submucosal serous cells and bronchiolar Clara cells. Early expression of ENaC proteins in human fetal airways suggests that Na+ absorption might begin significantly before birth, even if secretion is still dominant.
引用
收藏
页码:L177 / L184
页数:8
相关论文
共 38 条
[1]   Molecular biology of Na+ absorption [J].
Barbry, P ;
Hofman, P .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1997, 273 (03) :G571-G585
[2]   DEVELOPMENTAL-CHANGES IN LUNG EPITHELIAL ION-TRANSPORT AND LIQUID MOVEMENT [J].
BLAND, RD ;
NIELSON, DW .
ANNUAL REVIEW OF PHYSIOLOGY, 1992, 54 :373-394
[3]   RELATIVE EXPRESSION OF THE HUMAN EPITHELIAL NA+ CHANNEL SUBUNITS IN NORMAL AND CYSTIC-FIBROSIS AIRWAYS [J].
BURCH, LH ;
TALBOT, CR ;
KNOWLES, MR ;
CANESSA, CM ;
ROSSIER, BC ;
BOUCHER, RC .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 269 (02) :C511-C518
[4]   AMILORIDE-SENSITIVE EPITHELIAL NA+ CHANNEL IS MADE OF 3 HOMOLOGOUS SUBUNITS [J].
CANESSA, CM ;
SCHILD, L ;
BUELL, G ;
THORENS, B ;
GAUTSCHI, I ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1994, 367 (6462) :463-467
[5]   EPITHELIAL SODIUM-CHANNEL RELATED TO PROTEINS INVOLVED IN NEURODEGENERATION [J].
CANESSA, CM ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1993, 361 (6411) :467-470
[6]   REGULATION OF EXPRESSION OF THE LUNG AMILORIDE-SENSITIVE NA+ CHANNEL BY STEROID-HORMONES [J].
CHAMPIGNY, G ;
VOILLEY, N ;
LINGUEGLIA, E ;
FRIEND, V ;
BARBRY, P ;
LAZDUNSKI, M .
EMBO JOURNAL, 1994, 13 (09) :2177-2181
[7]   The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer [J].
Coscoy, S ;
Lingueglia, E ;
Lazdunski, M ;
Barbry, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (14) :8317-8322
[8]   CELL-SPECIFIC EXPRESSION OF EPITHELIAL SODIUM-CHANNEL ALPHA-SUBUNITS, BETA-SUBUNITS, AND GAMMA-SUBUNITS IN ALDOSTERONE-RESPONSIVE EPITHELIA FROM THE RAT - LOCALIZATION BY IN-SITU HYBRIDIZATION AND IMMUNOCYTOCHEMISTRY [J].
DUC, C ;
FARMAN, N ;
CANESSA, CM ;
BONVALET, JP ;
ROSSIER, BC .
JOURNAL OF CELL BIOLOGY, 1994, 127 (06) :1907-1921
[9]   SUBMUCOSAL GLANDS ARE THE PREDOMINANT SITE OF CFTR EXPRESSION IN THE HUMAN BRONCHUS [J].
ENGELHARDT, JF ;
YANKASKAS, JR ;
ERNST, SA ;
YANG, YP ;
MARINO, CR ;
BOUCHER, RC ;
COHN, JA ;
WILSON, JM .
NATURE GENETICS, 1992, 2 (03) :240-248
[10]   Noncoordinated expression of alpha-, beta-, and gamma-subunit mRNAs of epithelial Na+ channel along rat respiratory tract [J].
Farman, N ;
Talbot, CR ;
Boucher, R ;
Fay, M ;
Canessa, C ;
Rossier, B ;
Bonvalet, JP .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1997, 272 (01) :C131-C141