Cooperative binding of tetrameric p53 to DNA

被引:204
作者
Weinberg, RL
Veprintsev, DB
Fersht, AR
机构
[1] Univ Cambridge, Chem Lab, Cambridge CB2 2QH, England
[2] Univ Cambridge, Cambridge Ctr Prot Engn, MRC, Cambridge CB2 2QH, England
关键词
p53; DNA binding; fluorescence anisotropy; analytical ultracentrifugation;
D O I
10.1016/j.jmb.2004.06.071
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We analysed by analytical ultracentrifugation and fluorescence anisotropy the binding of p53 truncation mutants to sequence-specific DNA. The synthetic 30 base-pair DNA oligomers contained the 20 base-pair recognition elements for p53, consisting of four sites of five base-pairs per p53 monomer. We found that the binding at low ionic strengths was obscured by artifacts of non-specific binding and so made measurements at higher ionic strengths. Analytical ultracentrifugation of the construct p53CT (residues 94-360, containing the DNA-binding core and tetramerization domains) gave a dissociation constant of -3 muM for its dimertetramer equilibrium, similar to that of full-length protein. Analytical ultracentrifugation and fluorescence anisotropy showed that p53CT formed a complex with the DNA constructs with 2:1 stoichiometry (dimer:DNA). The binding of p53CT (1-100 nm range) to DNA was highly cooperative, with a Hill coefficient of 1.8 (dimer:DNA). The dimeric L344A mutant of p53CT has impaired tetramerization. It bound to full-length DNA p53 recognition sequence, but with sixfold less affinity than wild-type protein. It did not form a detectable complex with a 30-mer DNA construct containing two specific five base-pair sites and two random sites, emphasizing the high co-operativity of the binding. The fundamental active unit of p53 appears to be the tetramer, which is induced by DNA binding, although it is a dimer at low concentrations. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1145 / 1159
页数:15
相关论文
共 47 条
[1]   4 P53 DNA-BINDING DOMAIN PEPTIDES BIND NATURAL P53-RESPONSE ELEMENTS AND BEND THE DNA [J].
BALAGURUMOORTHY, P ;
SAKAMOTO, H ;
LEWIS, MS ;
ZAMBRANO, N ;
CLORE, GM ;
GRONENBORN, AM ;
APPELLA, E ;
HARRINGTON, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8591-8595
[2]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[3]   REFINED SOLUTION STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF THE TUMOR-SUPPRESSOR P53 [J].
CLORE, GM ;
ERNST, J ;
CLUBB, R ;
OMICHINSKI, JG ;
KENNEDY, WMP ;
SAKAGUCHI, K ;
APPELLA, E ;
GRONENBORN, AM .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (04) :321-333
[4]   HIGH-RESOLUTION STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTIDIMENSIONAL NMR [J].
CLORE, GM ;
OMICHINSKI, JG ;
SAKAGUCHI, K ;
ZAMBRANO, N ;
SAKAMOTO, H ;
APPELLA, E ;
GRONENBORN, AM .
SCIENCE, 1994, 265 (5170) :386-391
[5]   DEFINITION OF A CONSENSUS BINDING-SITE FOR P53 [J].
ELDEIRY, WS ;
KERN, SE ;
PIETENPOL, JA ;
KINZLER, KW ;
VOGELSTEIN, B .
NATURE GENETICS, 1992, 1 (01) :45-49
[6]   PRESENCE OF A POTENT TRANSCRIPTION ACTIVATING SEQUENCE IN THE P53 PROTEIN [J].
FIELDS, S ;
JANG, SK .
SCIENCE, 1990, 249 (4972) :1046-1049
[7]   A TRANSCRIPTIONALLY ACTIVE DNA-BINDING SITE FOR HUMAN P53 PROTEIN COMPLEXES [J].
FUNK, WD ;
PAK, DT ;
KARAS, RH ;
WRIGHT, WE ;
SHAY, JW .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (06) :2866-2871
[8]   CALCULATION OF PROTEIN EXTINCTION COEFFICIENTS FROM AMINO-ACID SEQUENCE DATA [J].
GILL, SC ;
VONHIPPEL, PH .
ANALYTICAL BIOCHEMISTRY, 1989, 182 (02) :319-326
[9]  
GILL SC, 1990, ANAL BIOCHEM, V189, P283
[10]  
HOLLSTEIN M, 1994, NUCLEIC ACIDS RES, V22, P3551