Synergism between halide binding and proton transport in a CLC-type exchanger

被引:89
作者
Accardi, Alessio
Lobet, Severine
Williams, Carole
Miller, Christopher
Dutzler, Raimund
机构
[1] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
[2] Brandeis Univ, Howard Hughes Med Inst, Dept Biochem, Waltham, MA 02454 USA
关键词
CLC channels and transporters; secondary active ion transport; ClC-ec1; membrane protein structure; electrophysiology;
D O I
10.1016/j.jmb.2006.07.081
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Cl-/H+ exchange-transporter CLC-ec1 mediates stoichiometric transmembrane exchange of two Cl- ions for one proton. A conserved tyrosine ions visible in the structure residue, Y445, coordinates one of the bound Cl- and of this protein and is located near the intersection of the Cl- and H+ pathways. Mutants of this tyrosine were scrutinized for effects on the coupled transport of Cl- and H+ determined electrophysiologically and on protein structure determined crystallographically. Despite the strong conservation of Y445 in the CLC family, substitution of F or W at this position preserves wild-type transport behavior. Substitution by A, E, or H, however, produces uncoupled proteins with robust Cl- transport but greatly impaired movement of H+. The obligatory 2Cl(-) /1 H+ stoichiometry is thus lost in these mutants. The structures of all the mutants are essentially identical to wild-type, but apparent anion occupancy in the Cl- binding region correlates with functional H+ coupling. In particular, as determined by anomalous diffraction in crystals grown in Br, an electrophysiologically (-) competent Cl- analogue, the well-coupled transporters show strong Br- binding sites. However, in electron density at the "Inner" and "central" Cl- the uncoupled mutants, Br- density is absent at the central site, while still present at the inner site. An additional mutant, Y445L, is intermediate in both functional and structural features. This mutant clearly exchanges H+ for Cl-, but at a reduced H+-to-Cl- ratio; likewise, both the central and inner sites are occupied by Br-, but the central site shows lower Br- density than in wild-type (or in Y445FW). The correlation between proton coupling and central-site occupancy argues that halide binding to the central transport site somehow facilitates movement of H+, a synergism that is not readily understood in terms of alternating-site antiport schemes. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:691 / 699
页数:9
相关论文
共 32 条
[1]   The lactose permease of Escherichia coli:: overall structure, the sugar-binding site and the alternating access model for transport [J].
Abramson, J ;
Smirnova, I ;
Kasho, V ;
Verner, G ;
Iwata, S ;
Kaback, HR .
FEBS LETTERS, 2003, 555 (01) :96-101
[2]   Structure and mechanism of the lactose permease of Escherichia coli [J].
Abramson, J ;
Smirnova, I ;
Kasho, V ;
Verner, G ;
Kaback, HR ;
Iwata, S .
SCIENCE, 2003, 301 (5633) :610-615
[3]   Separate ion pathways in a Cl+/H+ exchanger [J].
Accardi, A ;
Walden, M ;
Nguitragool, W ;
Jayaram, H ;
Williams, C ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 2005, 126 (06) :563-570
[4]   Ionic currents mediated by a prokaryotic homologue of CLC Cl- channels [J].
Accardi, A ;
Kolmakova-Partensky, L ;
Williams, C ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 123 (02) :109-119
[5]   Conformational changes in the pore of CLC-0 [J].
Accardi, A ;
Pusch, M .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (03) :277-293
[6]   Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels [J].
Accardi, A ;
Miller, C .
NATURE, 2004, 427 (6977) :803-807
[7]   Site-directed fluorescence studies of a prokaryotic ClC antiporter [J].
Bell, Susan P. ;
Curran, Patricia K. ;
Choi, Sean ;
Mindell, Joseph A. .
BIOCHEMISTRY, 2006, 45 (22) :6773-6782
[8]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[9]   Side-chain charge effects and conductance determinants in the pore of CIC-0 chloride channels [J].
Chen, MF ;
Chen, TY .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (02) :133-145
[10]   X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity [J].
Dutzler, R ;
Campbell, EB ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 415 (6869) :287-294