Estimation of noise levels for models of chaotic dynamical systems

被引:47
作者
Heald, JPM [1 ]
Stark, J [1 ]
机构
[1] UCL, Ctr Nonlinear Dynam, London WC1E 6BT, England
关键词
D O I
10.1103/PhysRevLett.84.2366
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate how far it is possible to identify and separate dynamical noise from measurement noise in observed nonlinear time series. Using Bayesian methods, we derive estimates for the two noise levels, and find that, given a good model of the dynamics, these can give accurate results even if the dynamical noise level is orders of magnitude smaller than the measurement noise level, whereas a simple calculation of root mean square error badly understates the dynamical noise. We argue that this allows better estimates of the underlying dynamical time series, and so better predictions of its future and of its fundamental dynamical properties.
引用
收藏
页码:2366 / 2369
页数:4
相关论文
共 18 条
[1]  
ANOSOV DV, 1967, P STEKL I MATH, V90
[2]   MARKOV PARITIONS FOR AXIOM-A DIFFEOMORPHISMS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (03) :725-&
[3]  
DAVIES M, 1994, PHYSICA D, V79, P174
[4]  
DAVIES ME, 1994, NONLINEARITY CHAOS E
[5]   Optimal shadowing and noise reduction [J].
Farmer, J.D. ;
Sidorowich, J.J. .
Physica D: Nonlinear Phenomena, 1991, 47 (03) :373-392
[6]  
Grassberger Peter, 1993, Chaos, V3, P127, DOI 10.1063/1.165979
[7]  
GULL SF, 1989, FUND THEOR, V36, P53
[8]   A NOISE-REDUCTION METHOD FOR CHAOTIC SYSTEMS [J].
HAMMEL, SM .
PHYSICS LETTERS A, 1990, 148 (8-9) :421-428
[9]   NUMERICAL ORBITS OF CHAOTIC PROCESSES REPRESENT TRUE ORBITS [J].
HAMMEL, SM ;
YORKE, JA ;
GREBOGI, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 19 (02) :465-469
[10]  
Hastie T., 1990, Generalized additive model