Two-step growth of a hierarchical ZnO nanostructure by aqueous thermal decomposition in a neutral solution and its photovoltaic property

被引:10
作者
Chen, J. [1 ,3 ]
Lei, W. [1 ]
Song, J. L. [2 ]
Sun, X. W. [3 ]
Zhang, X. B. [1 ]
Deng, W. Q. [2 ]
机构
[1] Southeast Univ, Sch Elect Sci & Engn, Nanjing 210096, Peoples R China
[2] Nanyang Technol Univ, Sch Math & Phys Sci, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
ZnO; Nanowire; Thermal decomposition; Solar cell; NANORODS; ARRAYS; NANOWIRES;
D O I
10.1016/j.physe.2009.01.003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A two-step aqueous thermal decomposition method was used to synthesize a hierarchical ZnO nanostructure on indium-tin-oxide (ITO) glass in a neutral solution. As revealed by scanning electron microscopy and transmission electron microscopy, the product consists of a layered structure of ZnO nanorods at the bottom and nanowire atop. The ZnO nanowires were grown along the [0 0 0 1] direction with 20 nm in diameter and exceeded 10 mu m in length. The growth mechanism of the hierarchical ZnO nanostructure is discussed. Our results indicate that neutral solution and low Zn concentration are the keys for growing long and thin ZnO nanowires in large scale. Hierarchical ZnO nanostructure has applications in solar cell device as the electrode can largely improve the incident photon to current conversion efficiency (IPCE) and photovoltaic conversion efficiency (PCE) values due to the high aspect ratio. Nanowire ZnO on the top layer can absorb significant amount of quantum dots and the photoexcited electrons can efficiently get transferred into the Fro surface though nanorod array. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:822 / 827
页数:6
相关论文
共 26 条
[1]   Chemical solution-process method to synthesize ZnO nanorods with ultra-thin pinheads and ultra-thin nanobelts [J].
Bai, W. ;
Yu, K. ;
Zhang, Q. ;
Huang, Y. ;
Wang, Q. ;
Zhu, Z. ;
Dai, N. ;
Sun, Y. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 87 (04) :755-759
[2]   Large-scale synthesis of zinc oxide rose-like structures and their optical properties [J].
Bai, Wei ;
Yu, Ke ;
Zhang, Qiuxiang ;
Zhu, Xia ;
Peng, Deyan ;
Zhu, Ziqiang ;
Dai, Ning ;
Sun, Yan .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (04) :822-827
[3]   Growth of ZnO nanowires in aqueous solution by a dissolution-growth mechanism [J].
Bu, Shaojing ;
Cui, Chunxiang ;
Wang, Qingzhou ;
Bai, Ling .
JOURNAL OF NANOMATERIALS, 2008, 2008
[4]   Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route [J].
Dev, A ;
Kar, S ;
Chakrabarti, S ;
Chaudhuri, S .
NANOTECHNOLOGY, 2006, 17 (05) :1533-1540
[5]   Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode [J].
Jiang, C. Y. ;
Sun, X. W. ;
Lo, G. Q. ;
Kwong, D. L. ;
Wang, J. X. .
APPLIED PHYSICS LETTERS, 2007, 90 (26)
[6]   Quantum dot solar cells.: Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J].
Kongkanand, Anusorn ;
Tvrdy, Kevin ;
Takechi, Kensuke ;
Kuno, Masaru ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (12) :4007-4015
[7]   Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices [J].
Krishnamoorthy, S. ;
Iliadis, A. A. .
SOLID-STATE ELECTRONICS, 2006, 50 (06) :1113-1118
[8]   Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J].
Leschkies, Kurtis S. ;
Divakar, Ramachandran ;
Basu, Joysurya ;
Enache-Pommer, Emil ;
Boercker, Janice E. ;
Carter, C. Barry ;
Kortshagen, Uwe R. ;
Norris, David J. ;
Aydil, Eray S. .
NANO LETTERS, 2007, 7 (06) :1793-1798
[9]   Efficient surface-conducted field emission from ZnO nanotetrapods [J].
Li, Chi ;
Hou, Kai ;
Lei, Wei ;
Zhang, Xiaobing ;
Wang, Baoping ;
Sun, X. W. .
APPLIED PHYSICS LETTERS, 2007, 91 (16)
[10]  
LIDE DR, 2008, ANAL CHEM, V8, P118