Near-field microscopy by elastic light scattering from a tip

被引:563
作者
Keilmann, F [1 ]
Hillenbrand, R
机构
[1] Max Planck Inst Biochem, Abt Mol Strukt Biol, D-82152 Martinsried, Munchen, Germany
[2] Max Planck Inst Biochem, Nanophoton Grp, D-82152 Martinsried, Munchen, Germany
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 362卷 / 1817期
关键词
near-field microscopy; apertureless optical near-field microscopy; infrared microscopy; plasmon resonance;
D O I
10.1098/rsta.2003.1347
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe ultraresolution microscopy far beyond the classical Abbe diffraction limit of one half wavelength (lambda/2) and also beyond the practical limit (ca. lambda/10) of aperture-based scanning near-field optical microscopy (SNOM). The 'apertureless' SNOM discussed here uses light scattering from a sharp tip (hence scattering-type or s-SNOM) and has no lambda-related resolution limit. Rather, its resolution is approximately equal to the radius a of the probing tip (for commercial tips, a < 20 nm) so that 10 nm is obtained in the visible (lambda/60). A resolution of lambda/500 has been obtained in the mid-infrared at lambda = 10 mum. The advantage of infrared, terahertz and even microwave illumination is that specific excitations can be exploited to yield specific contrast, e.g. the molecular vibration offering a spectroscopic fingerprint to identify chemical composition. S-SNOM can routiuely acquire simultaneous, amplitude and phase images to obtain information on refractive and absorptive properties. Plasmon- or phonon-resonant materials can be highlighted by their particularly high near-field signal level. Furthermore, s-SNOM can map the characteristic optical eigenfields of small, optically resonant particles. Lastly, we describe theoretical modelling that explains and predicts s-SNOM contrast on the basis of the local dielectric function.
引用
收藏
页码:787 / 805
页数:19
相关论文
共 62 条
[1]   Localized surface plasmons on nanometric gold particles observed with an apertureless scanning near-field optical microscope [J].
Adam, PM ;
Benrezzak, S ;
Bijeon, JL ;
Royer, P .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (11) :6919-6921
[2]   Near-field optical spectroscopy using an incoherent light source [J].
Aigouy, L ;
Andréani, FX ;
Boccara, AC ;
Rivoal, JC ;
Porto, JA ;
Carminati, R ;
Greffet, JJ ;
Mégy, R .
APPLIED PHYSICS LETTERS, 2000, 76 (04) :397-399
[3]   Apertureless scanning near-field infrared microscopy of a rough polymeric surface [J].
Akhremitchev, BB ;
Pollack, S ;
Walker, GC .
LANGMUIR, 2001, 17 (09) :2774-2781
[4]   THE EFFECTS OF THE INTERACTION BETWEEN RESONANCES IN THE ELECTROMAGNETIC RESPONSE OF A SPHERE-PLANE STRUCTURE - APPLICATIONS TO SURFACE ENHANCED SPECTROSCOPY [J].
ARAVIND, PK ;
METIU, H .
SURFACE SCIENCE, 1983, 124 (2-3) :506-528
[5]   COHERENT TIME-DOMAIN FAR-INFRARED SPECTROSCOPY [J].
AUSTON, DH ;
CHEUNG, KP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1985, 2 (04) :606-612
[6]   Optical contrast in apertureless microscopy [J].
Azoulay, J ;
Débarre, A ;
Richard, A ;
Tchénio, P .
APPLIED OPTICS, 2000, 39 (01) :129-134
[7]   BREAKING THE DIFFRACTION BARRIER - OPTICAL MICROSCOPY ON A NANOMETRIC SCALE [J].
BETZIG, E ;
TRAUTMAN, JK ;
HARRIS, TD ;
WEINER, JS ;
KOSTELAK, RL .
SCIENCE, 1991, 251 (5000) :1468-1470
[8]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[9]  
BINNIG G, 1982, HELV PHYS ACTA, V55, P726
[10]  
Bohren C., 1983, ABSORPTION SCATTERIN