Chiral observables and modular invariants

被引:32
作者
Rehren, KH [1 ]
机构
[1] Univ Gottingen, Inst Theoret Phys, D-37073 Gottingen, Germany
关键词
D O I
10.1007/PL00005523
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Various definitions of chiral observables in a given Mobius covariant two-dimensional (2D) theory are shown to be equivalent. Their representation theory in the vacuum Hilbert space of the 2D theory is studied. It shares the general characteristics of modular invariant partition functions, although SL(2, Z) transformation properties are not assumed. First steps towards a classification are made.
引用
收藏
页码:689 / 712
页数:24
相关论文
共 38 条
[1]   Modular invariants, graphs and α-induction for nets of subfactors I [J].
Bockenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (02) :361-386
[2]   Modular invariants, graphs and α-induction for nets of subfactors.: II [J].
Böckenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) :57-103
[3]   Modular invariants, graphs and α-induction for nets of subfactors.: III [J].
Böckenhauer, J ;
Evens, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) :183-228
[4]   MODULAR STRUCTURE AND DUALITY IN CONFORMAL QUANTUM-FIELD THEORY [J].
BRUNETTI, R ;
GUIDO, D ;
LONGO, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (01) :201-219
[5]   THE A-D-E CLASSIFICATION OF MINIMAL AND A1(1) CONFORMAL INVARIANT THEORIES [J].
CAPPELLI, A ;
ITZYKSON, C ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) :1-26
[6]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204
[7]  
Fredenhagen K., 1992, Reviews in Mathematical Physics, P113, DOI 10.1142/S0129055X92000170
[8]   SUPERSELECTION SECTORS WITH BRAID GROUP STATISTICS AND EXCHANGE ALGEBRAS .1. GENERAL-THEORY [J].
FREDENHAGEN, K ;
REHREN, KH ;
SCHROER, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (02) :201-226
[9]  
Frohlich J., 1990, Reviews in Mathematical Physics, V2, P251, DOI 10.1142/S0129055X90000107
[10]   OPERATOR-ALGEBRAS AND CONFORMAL FIELD-THEORY [J].
GABBIANI, F ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (03) :569-640