Signatures of adaptive evolution within human non-coding sequence

被引:31
作者
Ponting, Chris P. [1 ]
Lunter, Gerton [1 ]
机构
[1] Univ Oxford, MRC, Dept Physiol Anat & Genet, Funct Genet Unit, Oxford OX1 3QX, England
基金
英国医学研究理事会;
关键词
D O I
10.1093/hmg/ddl182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human genome is often portrayed as consisting of three sequence types, each distinguished by their mode of evolution. Purifying selection is estimated to act on 2.5-5.0% of the genome, whereas virtually all remaining sequence is considered to have evolved neutrally and to be devoid of functionality. The third mode of evolution, positive selection of advantageous changes, is considered rare. Such instances have been inferred only for a handful of sites, and these lie almost exclusively within protein-coding genes. Nevertheless, the majority of positively selected sequence is expected to lie within the wealth of functional 'dark matter' present outside of the coding sequence. Here, we review the evolutionary evidence for the majority of human-conserved DNA lying outside of the protein-coding sequence. We argue that within this non-coding fraction lies at least 1 Mb of functional sequence that has accumulated many beneficial nucleotide replacements. Illuminating the functions of this adaptive dark matter will lead to a better understanding of the sequence changes that have shaped the innovative biology of our species.
引用
收藏
页码:R170 / R175
页数:6
相关论文
共 68 条
[1]   Adaptive evolution of non-coding DNA in Drosophila [J].
Andolfatto, P .
NATURE, 2005, 437 (7062) :1149-1152
[2]   A novel class of small RNAs bind to MILI protein in mouse testes [J].
Aravin, Alexei ;
Gaidatzis, Dimos ;
Pfeffer, Sebastien ;
Lagos-Quintana, Mariana ;
Landgraf, Pablo ;
Iovino, Nicola ;
Morris, Patricia ;
Brownstein, Michael J. ;
Kuramochi-Miyagawa, Satomi ;
Nakano, Toru ;
Chien, Minchen ;
Russo, James J. ;
Ju, Jingyue ;
Sheridan, Robert ;
Sander, Chris ;
Zavolan, Mihaela ;
Tuschl, Thomas .
NATURE, 2006, 442 (7099) :203-207
[3]   Signatures of natural selection in the human genome [J].
Bamshad, M ;
Wooding, SP .
NATURE REVIEWS GENETICS, 2003, 4 (02) :99-111A
[4]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[5]   The genomic rate of adaptive amino acid substitution in Drosophila [J].
Bierne, N ;
Eyre-Walker, A .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (07) :1350-1360
[6]   Hearing silence: non-neutral evolution at synonymous sites in mammals [J].
Chamary, JV ;
Parmley, JL ;
Hurst, LD .
NATURE REVIEWS GENETICS, 2006, 7 (02) :98-108
[7]   The share of human genomic DNA under selection estimated from human-mouse genomic alignments [J].
Chiaromonte, F ;
Weber, RJ ;
Roskin, KM ;
Diekhans, M ;
Kent, WJ ;
Haussler, D .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2003, 68 :245-254
[8]   Genomics of the evolutionary process [J].
Clark, Andrew G. .
TRENDS IN ECOLOGY & EVOLUTION, 2006, 21 (06) :316-321
[9]   Finishing the euchromatic sequence of the human genome [J].
Collins, FS ;
Lander, ES ;
Rogers, J ;
Waterston, RH .
NATURE, 2004, 431 (7011) :931-945
[10]   THE CPG DINUCLEOTIDE AND HUMAN GENETIC-DISEASE [J].
COOPER, DN ;
YOUSSOUFIAN, H .
HUMAN GENETICS, 1988, 78 (02) :151-155