Regulation of novel superoxide-producing NAD(P)H oxidases

被引:62
作者
Takeya, Ryu
Sumimoto, Hideki
机构
[1] Kyushu Univ, Med Inst Bioregulat, Higashi Ku, Fukuoka 8128582, Japan
[2] Japan Sci & Technol Agcy, Kawaguchi, Saitama, Japan
关键词
D O I
10.1089/ars.2006.8.1523
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deliberate production of reactive oxygen species (ROS) are catalyzed by enzymes that belong to the NAD(P)H oxidase (Nox) family. The human genome contains seven members of the Nox family.: the superoxide-producing enzymes Nox1 through Nox5 and the dual oxidases Duox1 and Duox2 that release hydrogen peroxide but not superoxide. Among them, the classical member gp91(phox)/Nox2 functions as the phagocyte NADPH oxidase, playing a crucial role in host defense. Although Nox2, heterodimerized with its membrane-spanning partner p22(phox), is inactive in resting cells, during phagocytosis it forms an active complex with soluble regulatory proteins such as the organizer p47(phox), the activator p67(phox), and the small GTPase Rac. Here the authors describe how the novel superoxide-producing Nox oxidases (Nox1, 3, 4, and 5) with different functions are regulated by p22(phox), the Nox organizers, the Nox activators, and Rac, and how their expression is controlled at the transcriptional level.
引用
收藏
页码:1523 / 1532
页数:10
相关论文
共 88 条
[1]   Interaction of human neutrophil flavocytochrome b with cytosolic proteins: Transferred-NOESY NMR studies of a gp91(phox) C-terminal peptide bound to p47(phox) [J].
Adams, ER ;
Dratz, EA ;
Gizachew, D ;
DeLeo, FR ;
Yu, LX ;
Volpp, BD ;
Vlases, M ;
Jesaitis, AJ ;
Quinn, MT .
BIOCHEMICAL JOURNAL, 1997, 325 :249-257
[2]   Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47 phox - Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47 phox, thereby activating the oxidase [J].
Ago, T ;
Nunoi, H ;
Ito, T ;
Sumimoto, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (47) :33644-33653
[3]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[4]   Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation [J].
Ago, T ;
Kuribayashi, F ;
Hiroaki, H ;
Takeya, R ;
Ito, T ;
Kohda, D ;
Sumimoto, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (08) :4474-4479
[5]   Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase [J].
Ambasta, RK ;
Kumar, P ;
Griendling, KK ;
Schmidt, HHHW ;
Busse, R ;
Brandes, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :45935-45941
[6]   Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1 [J].
Arnold, RS ;
Shi, J ;
Murad, E ;
Whalen, AM ;
Sun, CQ ;
Polavarapu, R ;
Parthasarathy, S ;
Petros, JA ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5550-5555
[7]   NOX3, a superoxide-generating NADPH oxidase of the inner ear [J].
Bánfi, B ;
Malgrange, B ;
Knisz, J ;
Steger, K ;
Dubois-Dauphin, M ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :46065-46072
[8]   Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5) [J].
Bánfi, B ;
Tirone, F ;
Durussel, I ;
Knisz, J ;
Moskwa, P ;
Molnár, GZ ;
Krause, KH ;
Cox, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) :18583-18591
[9]   Two novel proteins activate superoxide generation by the NADPH oxidase NOX1 [J].
Bánfi, B ;
Clark, RA ;
Steger, K ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (06) :3510-3513
[10]   A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1 [J].
Bánfi, B ;
Maturana, A ;
Jaconi, S ;
Arnaudeau, S ;
Laforge, T ;
Sinha, B ;
Ligeti, E ;
Demaurex, N ;
Krause, KH .
SCIENCE, 2000, 287 (5450) :138-142