Low-temperature synthesis of bismuth titanate niobate (Bi7Ti4NbO21) nanoparticles from a metal-organic polymeric precursor

被引:22
作者
Durán, P [1 ]
Moure, C [1 ]
Villegas, M [1 ]
Tartaj, J [1 ]
Caballero, AC [1 ]
Fernández, JF [1 ]
机构
[1] CSIC, Inst Ceram & Vidrio, Electroceram Dept, Madrid 28500, Spain
关键词
Differential thermal analysis - Lattice constants - Low temperature operations - Metallorganic polymers - Oxidation - Pyrolysis - Resins - Scanning electron microscopy - Stoichiometry - Synthesis (chemical) - Thermogravimetric analysis - X ray diffraction analysis;
D O I
10.1111/j.1151-2916.2000.tb01325.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper describes the preparation of homogeneous Bi7Ti4NbO21 single-phase ceramic powders of similar to 55 nm crystallite size, at temperatures as low as 400 degrees-500 degrees C using a metal citrate complex method based on the Pechini-type reaction route. The thermal decomposition/oxidation of the polymerized resin, as investigated by TG/DTA, XRD, and SEM, led to the formation of a well-defined orthorhombic Bi7Ti4NbO21 compound with lattice parameters a = 0.544, b = 0.540, and c = 2.905 +/- 0.0005 nm. Reaction takes place through an intermediate binary phase with a stoichiometry close to Bi20TiO32 which forms between 300 degrees and 375 degrees C. The metalorganic precursor synthesis method, where Bi, Ti, and Nb ions are first chelated to form metal complexes and then polymerized to give a gel, allows control of the Bi/Ti/Nb stoichiometric ratio leading to the rapid formation of nanosized bismuth titanate niobate (Bi7Ti4NbO21) ceramic powders, at temperatures much lower than usually needed by conventional processing of mixed-oxide powders.
引用
收藏
页码:1029 / 1032
页数:4
相关论文
共 14 条
[1]  
ANDERSON HU, 1987, ADV CERAM, V21, P91
[2]  
AURIVILLIUS B, 1950, ARK KEMI, V1, P499
[3]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[4]  
Barsukova M. L., 1972, Journal of Crystal Growth, V13-14, P530, DOI 10.1016/0022-0248(72)90293-X
[5]   PIEZOELECTRICITY AND PHASE-TRANSITIONS OF THE MIXED-LAYER BISMUTH TITANATE NIOBATE BI7TI4NBO21 [J].
CHU, F ;
DAMJANOVIC, D ;
STEINER, O ;
SETTER, N .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (11) :3142-3144
[6]   FATIGUE-FREE FERROELECTRIC CAPACITORS WITH PLATINUM-ELECTRODES [J].
DEARAUJO, CAP ;
CUCHIARO, JD ;
MCMILLAN, LD ;
SCOTT, MC ;
SCOTT, JF .
NATURE, 1995, 374 (6523) :627-629
[7]   STRUCTURE DETERMINATION OF A MIXED-LAYER BISMUTH TITANATE, BI7TI4NBO21, BY SUPER-HIGH-RESOLUTION ELECTRON-MICROSCOPY [J].
HORIUCHI, S ;
KIKUCHI, T ;
GOTO, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1977, 33 (SEP1) :701-&
[8]   SYNTHESIS OF NEW, LAYERED BISMUTH TITANATES, BI7TI4NBO21 AND BI6TI3WO18 [J].
KIKUCHI, T .
JOURNAL OF THE LESS-COMMON METALS, 1976, 48 (02) :319-323
[9]  
KLUG KP, 1974, XRAY DIFFRACTION PRO, P618
[10]  
KORZUNOVA LV, 1987, INORG MATER+, V23, P1333