In search for an accurate model of the photosynthetic carbon metabolism

被引:5
作者
Arnold, Anne [1 ,2 ]
Nikoloski, Zoran [1 ,2 ]
机构
[1] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany
[2] Univ Potsdam, Inst Biochem & Biol, D-14469 Potsdam, Germany
关键词
Calvin-Benson cycle; Carbon metabolism; Model ranking; Differential and algebraic equations; MATHEMATICAL-MODEL; CALVIN CYCLE; TEMPERATURE RESPONSE; BIOCHEMICAL-MODEL; STEADY-STATE; CO2; LEAVES; ARABIDOPSIS; CHLOROPLAST; SIMULATION;
D O I
10.1016/j.matcom.2012.03.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The photosynthetic carbon metabolism, including the Calvin-Benson cycle, is the primary pathway in C-3-plants, producing starch and sucrose from CO2. Understanding the interplay between regulation and efficiency of this pathway requires the development of mathematical models which would explain the observed dynamics of metabolic transformations. Here, we address this question by casting the existing models of Calvin-Benson cycle and the end-product processes into an analysis framework which not only facilitates the comparison of the different models, but also allows for their ranking with respect to chosen criteria, including stability, sensitivity, robustness and/or compliance with experimental data. The importance of the photosynthetic carbon metabolism for the increase of plant biomass has resulted in many models with various levels of detail. We provide the largest compendium of 15 existing, well-investigated models together with a comprehensive classification as well as a ranking framework to determine the best-performing models for metabolic engineering and planning of in silica experiments. The classification can be additionally used, based on the model structure, as a tool to identify the models which match best the experimental design. The provided ranking is just one alternative to score models and, by changing the weighting factor, this framework also could be applied for selection of other criteria of interest. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 194
页数:24
相关论文
共 43 条
[1]  
Abdi H., 2007, Encyclopedia of Measurement and Statistics, P651, DOI DOI 10.4135/9781412952644.N299
[3]   Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations [J].
Arrivault, Stephanie ;
Guenther, Manuela ;
Ivakov, Alexander ;
Feil, Regina ;
Vosloh, Daniel ;
van Dongen, Joost T. ;
Sulpice, Ronan ;
Stitt, Mark .
PLANT JOURNAL, 2009, 59 (05) :824-839
[4]   Design and analysis of synthetic carbon fixation pathways [J].
Bar-Even, Arren ;
Noor, Elad ;
Lewis, Nathan E. ;
Milo, Ron .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (19) :8889-8894
[5]   FREE ENERGY CHANGES AND METABOLIC REGULATION IN STEADY-STATE PHOTOSYNTHETIC CARBON REDUCTION [J].
BASSHAM, JA ;
KRAUSE, GH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 189 (02) :207-&
[6]   Improved temperature response functions for models of Rubisco-limited photosynthesis [J].
Bernacchi, CJ ;
Singsaas, EL ;
Pimentel, C ;
Portis, AR ;
Long, SP .
PLANT CELL AND ENVIRONMENT, 2001, 24 (02) :253-259
[7]   Multimodel inference - understanding AIC and BIC in model selection [J].
Burnham, KP ;
Anderson, DR .
SOCIOLOGICAL METHODS & RESEARCH, 2004, 33 (02) :261-304
[8]  
Damour G., 2007, P 5 INT WORKSH FUNCT
[9]   The single-process biochemical reaction of Rubisco: A unified theory and model with the effects of irradiance, CO2 and rate-limiting step on the kinetics of C3 and C4 photosynthesis from gas exchange [J].
Farazdaghi, Hadi .
BIOSYSTEMS, 2011, 103 (02) :265-284
[10]   A BIOCHEMICAL-MODEL OF PHOTOSYNTHETIC CO2 ASSIMILATION IN LEAVES OF C-3 SPECIES [J].
FARQUHAR, GD ;
CAEMMERER, SV ;
BERRY, JA .
PLANTA, 1980, 149 (01) :78-90