Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane

被引:75
作者
Romanini, D. [1 ]
Chenevier, M.
Kassi, S.
Schmidt, M.
Valant, C.
Ramonet, M.
Lopez, J.
Jost, H. -J.
机构
[1] Univ Grenoble 1, CNRS, UMR 5588, Spectrometrie Phys Lab, F-38402 St Martin Dheres, France
[2] CEA, CNRS, UMR 1572, Lab Sci Climat & Environm, F-91198 Gif Sur Yvette, France
[3] Bay Area Environm Res Inst, Sonoma, CA 95476 USA
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2006年 / 83卷 / 04期
关键词
D O I
10.1007/s00340-006-2177-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the application of the new technique of optical-feedback cavity-enhanced absorption spectroscopy to the real-time quantitative measurement of tropospheric methane traces from an airplane using a compact, low cost instrument based on a telecommunication-type diode laser operating close to room temperature. Methane concentration is obtained by fitting the absorption line centered at 1658.96 nm (6026.23 cm(-1)) which belongs to the first overtone transition of the CH stretch vibration. The measurement rate is about 30 Hz, but the response time is limited to about 0.3 s by the gas flow in the measurement cell. The instrument provides the absolute ambient methane concentration accurate to +/- 1% (+/- 20 ppb) without need for a periodic calibration. This is demonstrated by a hands-off comparison with a self-calibrating chromatographic setup during 10 days. The observed measurement stability can be extrapolated to much longer time periods. With respect to the short-term performance (minutes) fast concentration changes at the level of 1 ppb can be detected, and we believe this performance can be extended to the long term. Finally, a laboratory comparison with a lead-salt mid-infrared diode laser multipass spectrometer (operating close to 3028 cm(-1) at liquid nitrogen temperature) demonstrates a similar performance.
引用
收藏
页码:659 / 667
页数:9
相关论文
共 19 条
[1]   Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5 [J].
Bergamaschi, P ;
Krol, M ;
Dentener, F ;
Vermeulen, A ;
Meinhardt, F ;
Graul, R ;
Ramonet, M ;
Peters, W ;
Dlugokencky, EJ .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2431-2460
[2]  
BUCHWITZ M, 2005, ATMOS CHEM PHYS DISC, V5, P1943
[3]  
CUNNOLD DM, 2005, J GEOPHYS RES, V107, P4225
[4]   Interannual variability and trend of CH4 lifetime as a measure for OH changes in the 1979-1993 time period -: art. no. 4442 [J].
Dentener, F ;
Peters, W ;
Krol, M ;
van Weele, M ;
Bergamaschi, P ;
Lelieveld, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D15)
[5]   Atmospheric methane levels off: Temporary pause or a new steady-state? [J].
Dlugokencky, EJ ;
Houweling, S ;
Bruhwiler, L ;
Masarie, KA ;
Lang, PM ;
Miller, JB ;
Tans, PP .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (19) :ASC5-1
[6]   THE GROWTH-RATE AND DISTRIBUTION OF ATMOSPHERIC METHANE [J].
DLUGOKENCKY, EJ ;
STEELE, LP ;
LANG, PM ;
MASARIE, KA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D8) :17021-17043
[7]   Parametric generation of tunable light from continuous-wave to femtosecond pulses [J].
Dunn, MH ;
Ebrahimzadeh, M .
SCIENCE, 1999, 286 (5444) :1513-1517
[8]  
Ehhalt D, 2001, CLIMATE CHANGE 2001: THE SCIENTIFIC BASIS, P239
[9]  
[Houghton J.T. IPCC. IPCC.], 2001, CLIMATE CHANGE
[10]   ATOMES A IINTERIEUR DUN INTERFEROMETRE PEROT-FABRY [J].
KASTLER, A .
APPLIED OPTICS, 1962, 1 (01) :17-24