Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of Geminin through its N-terminal region

被引:100
作者
Nishitani, H
Lygerou, Z
Nishimoto, T
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept Mol Biol, Higashi Ku, Fukuoka 8128582, Japan
[2] Univ Patras, Sch Med, Lab Gen Biol, Patras 26500, Greece
关键词
D O I
10.1074/jbc.M312644200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Licensing of replication origins is carefully regulated in a cell cycle to maintain genome integrity. Using an in vivo ubiquitination assay and temperature-sensitive cell lines we demonstrate that Cdt1 in mammalian cells is degraded through ubiquitin-dependent proteolysis in S-phase. siRNA experiments for Geminin indicate that Cdt1 is degraded in the absence of Geminin. The N terminus of Cdt1 is required for its nuclear localization, associates with cyclin A, but is dispensable for the association of Cdt1 with Geminin in cells. This region is responsible for proteolysis of Cdt1 in S-phase. On the other hand, the N terminus-truncated Cdt1 is stable in S-phase, and associates with the licensing inhibitor, Geminin. High level expression of this form of Cdt1 brings about cells having higher DNA content. Proteasome inhibitors stabilize Cdt1 in S-phase, and the protein is detected in the nucleus in a complex with Geminin. This form of Cdt1 associates with chromatin as tightly as that of G1-cells, when no Geminin is detected. Our data show that proteolysis and Geminin binding independently inactivate Cdt1 after the onset of S-phase to prevent re-replication.
引用
收藏
页码:30807 / 30816
页数:10
相关论文
共 63 条
[1]   Components and dynamics of DNA replication complexes in S-cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase [J].
Aparicio, OM ;
Weinstein, DM ;
Bell, SP .
CELL, 1997, 91 (01) :59-69
[2]   Oncogenic potential of the DNA replication licensing protein CDT1 [J].
Arentson, E ;
Faloon, P ;
Seo, J ;
Moon, E ;
Studts, JM ;
Fremont, DH ;
Choi, KH .
ONCOGENE, 2002, 21 (08) :1150-1158
[3]   Cdc18 transcription and proteolysis couple S phase to passage through mitosis [J].
Baum, B ;
Nishitani, H ;
Yanow, S ;
Nurse, P .
EMBO JOURNAL, 1998, 17 (19) :5689-5698
[4]   DNA replication in eukaryotic cells [J].
Bell, SP ;
Dutta, A .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :333-374
[5]   The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S-M checkpoint and causes apoptosis in neurons [J].
Chen, YZ ;
McPhie, DL ;
Hirschberg, J ;
Neve, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :8929-8935
[6]   The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts [J].
Coleman, TR ;
Carpenter, PB ;
Dunphy, WG .
CELL, 1996, 87 (01) :53-63
[7]   P25(RUM1) ORDERS S-PHASE AND MITOSIS BY ACTING AS AN INHIBITOR OF THE P34(CDC2) MITOTIC KINASE [J].
CORREABORDES, J ;
NURSE, P .
CELL, 1995, 83 (06) :1001-1009
[8]  
Coverley D, 2000, J CELL SCI, V113, P1929
[9]   Distinct roles for cyclins E and A during DNA replication complex assembly and activation [J].
Coverley, D ;
Laman, H ;
Laskey, RA .
NATURE CELL BIOLOGY, 2002, 4 (07) :523-528
[10]   S-PHASE-PROMOTING CYCLIN-DEPENDENT KINASES PREVENT RE-REPLICATION BY INHIBITING THE TRANSITION OF REPLICATION ORIGINS TO A PRE-REPLICATIVE STATE [J].
DAHMANN, C ;
DIFFLEY, JFX ;
NASMYTH, KA .
CURRENT BIOLOGY, 1995, 5 (11) :1257-1269