Paraesthesiae induced by prolonged high frequency stimulation of human cutaneous afferents

被引:23
作者
Kiernan, MC [1 ]
Hales, JP [1 ]
Gracies, JM [1 ]
Mogyoros, I [1 ]
Burke, D [1 ]
机构
[1] PRINCE WALES HOSP, DEPT NEUROL, SYDNEY, NSW 2031, AUSTRALIA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1997年 / 501卷 / 02期
关键词
D O I
10.1111/j.1469-7793.1997.461bn.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. The present study has explored the behaviour of human cutaneous afferents following conduction of prolonged trains of impulses at 200 Hz for 10-20 min, correlating the resultant changes in excitability with the perception of paraesthesiae. 2. Tetanization for 10 min resulted in activity-dependent changes in axonal excitability, with an initial period of hyperexcitability, followed by a long-lasting subexcitability. All subjects experienced paraesthesiae soon after cessation of the tetanic train, and these subsided gradually over 16 min. 3. Longer tetanic trains of 20 min duration resulted in greater changes in axonal excitability, but with paraesthesiae of a similar time course. The post-tetanic increase in excitability aias abolished when short tetanic trains were delivered > 30 min before long trains, but all subjects still experienced paraesthesiae. 4. Threshold distributions following tetanic stimulation for both 10 and 20 min established that all axons contributing to the sensory volley underwent a uniform pattern of post-tetanic threshold changes. There was no evidence of a bimodal distribution with some axons hyperpolarized and others depolarized, as occurs with motor axons. However, the excitability changes were graded, with axone of lowest threshold undergoing a proportionately greater increase in excitability than axons of higher threshold. 5. The post-tetanic excitability changes were greater at the site of stimulation than elsewhere along the peripheral nerve. However, DC polarizing currents applied at this site failed to alter the sensation of paraesthesiae in the post-tetanic period. Furthermore, local anaesthetic block of the peripheral nerve proximal to the stimulation site failed to suppress the paraesthesiae. 6. The uniform pattern of post-tetanic threshold changes for cutaneous afferents differs from the bimodal distribution seen with post-ischaemic and post-tetanic motor axons. This difference in behaviour may reflect greater inward rectification and greater expression of a non-inactivating threshold conductance in cutaneous afferents. It is suggested that the ectopic activity responsible for paraesthesiae in the post-tetanic period arises from a more central site than the peripheral nerve.
引用
收藏
页码:461 / 471
页数:11
相关论文
共 24 条
[1]   CHANGES IN EXCITABILITY OF HUMAN CUTANEOUS AFFERENTS FOLLOWING PROLONGED HIGH-FREQUENCY STIMULATION [J].
APPLEGATE, C ;
BURKE, D .
BRAIN, 1989, 112 :147-164
[2]   INTRACELLULAR-RECORDING FROM VERTEBRATE MYELINATED AXONS - MECHANISM OF THE DEPOLARIZING AFTERPOTENTIAL [J].
BARRETT, EF ;
BARRETT, JN .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 323 (FEB) :117-144
[3]  
BERGMANS J, 1982, ABNORMAL NERVES MUSC, P398
[4]  
Bergmans J., 1970, PHYSL SINGLE HUMAN N
[5]   CHANGES IN EXCITABILITY OF HUMAN MOTOR AXONS UNDERLYING POSTISCHEMIC FASCICULATIONS - EVIDENCE FOR 2 STABLE STATES [J].
BOSTOCK, H ;
BAKER, M ;
REID, G .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 441 :537-557
[6]   ACTIVITY-DEPENDENT EXCITABILITY CHANGES IN NORMAL AND DEMYELINATED RAT SPINAL ROOT AXONS [J].
BOSTOCK, H ;
GRAFE, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1985, 365 (AUG) :239-257
[7]   Latent addition in motor and sensory fibres of human peripheral nerve [J].
Bostock, H ;
Rothwell, JC .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 498 (01) :277-294
[8]   DIFFERENCES IN BEHAVIOR OF SENSORY AND MOTOR AXONS FOLLOWING RELEASE OF ISCHEMIA [J].
BOSTOCK, H ;
BURKE, D ;
HALES, JP .
BRAIN, 1994, 117 :225-234
[9]   CHANGES IN EXCITABILITY AND ACCOMMODATION OF HUMAN MOTOR AXONS FOLLOWING BRIEF PERIODS OF ISCHEMIA [J].
BOSTOCK, H ;
BAKER, M ;
GRAFE, P ;
REID, G .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 441 :513-535
[10]   POSTTETANIC EXCITABILITY CHANGES AND ECTOPIC DISCHARGES IN A HUMAN MOTOR AXON [J].
BOSTOCK, H ;
BERGMANS, J .
BRAIN, 1994, 117 :913-928