Local distortion and μ-mass of the cells of one dimensional asymptotically optimal quantizers

被引:7
作者
Delattre, S
Fort, JC
Pagés, G
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, UMR C5583, F-31062 Toulouse 4, France
[2] Univ Paris 07, Dept Math, Lab Probabil & Modeles Aleatoires, Paris, France
[3] Univ Paris 01, SAMOS, F-75231 Paris 05, France
[4] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
关键词
vector quantization; empirical measured; weak convergence; local distortion;
D O I
10.1081/STA-120029827
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider one dimensional probability distributions mu having a continuous and positive probability density function. We find the asymptotic of the size and the mass of the Voronoi cells and we prove that the local distortion associated with stationary or optimal quantizers is asymptotically uniform. Numerical simulations and computations illustrate the theoretical results and lead to the design of some good-fit test for the stationary equilibria.
引用
收藏
页码:1087 / 1117
页数:31
相关论文
共 22 条
[1]   A quantization algorithm for solving multidimensional discrete-time optimal stopping problems [J].
Bally, V ;
Pagés, G .
BERNOULLI, 2003, 9 (06) :1003-1049
[2]  
Bally V., 2001, Monte Carlo Methods and Applications, V7, P21, DOI 10.1515/mcma.2001.7.1-2.21
[3]  
BALLY V, 2002, IN PRESS MATH FINANC
[4]   SPECTRA OF QUANTIZED SIGNALS [J].
BENNETT, WR .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :446-472
[5]   MULTIDIMENSIONAL ASYMPTOTIC QUANTIZATION THEORY WITH RTH POWER DISTORTION MEASURES [J].
BUCKLEW, JA ;
WISE, GL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) :239-247
[6]  
COHORT P, 1997, GEOMETRICAL APPROACH
[7]   Asymptotics of optimal quantizers for some scalar distributions [J].
Fort, JC ;
Pagès, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 146 (02) :253-275
[8]   ON THE AS CONVERGENCE OF THE KOHONEN ALGORITHM WITH A GENERAL NEIGHBORHOOD FUNCTION [J].
Fort, Jean-Claude ;
Pages, Gilles .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) :1177-1216
[9]  
GERSHO A, 1979, IEEE T INFORM THEORY, V25, P373, DOI 10.1109/TIT.1979.1056067
[10]  
Gersho A., 1992, VECTOR QUANTIZATION