Transformation from Spots to Waves in a Model of Actin Pattern Formation

被引:52
作者
Whitelam, Stephen [1 ,2 ]
Bretschneider, Till [2 ]
Burroughs, Nigel J. [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Univ Warwick, Syst Biol Ctr, Coventry CV4 7AL, W Midlands, England
关键词
EQUILIBRIUM; SYSTEMS;
D O I
10.1103/PhysRevLett.102.198103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Actin networks in certain single-celled organisms exhibit a complex pattern-forming dynamics that starts with the appearance of static spots of actin on the cell cortex. Spots soon become mobile, executing persistent random walks, and eventually give rise to traveling waves of actin. Here we describe a possible physical mechanism for this distinctive set of dynamic transformations, by equipping an excitable reaction-diffusion model with a field describing the spatial orientation of its chief constituent (which we consider to be actin). The interplay of anisotropic actin growth and spatial inhibition drives a transformation at fixed parameter values from static spots to moving spots to waves.
引用
收藏
页数:4
相关论文
共 22 条
[1]  
BRETSCHNEIDER T, BIOPHYS J IN PRESS
[2]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[3]   Cytoskeletal waves in the absence of molecular motors [J].
Doubrovinski, K. ;
Kruse, K. .
EPL, 2008, 83 (01)
[4]  
FITZHUGH R, 1969, BIOL ENG, pCH1
[5]  
Gerisch G, 1968, Curr Top Dev Biol, V3, P157
[6]   Mobile actin clusters and traveling waves in cells recovering from actin depolymerization [J].
Gerisch, G ;
Bretschneider, T ;
Müller-Taubenberger, A ;
Simmeth, E ;
Ecke, M ;
Diez, S ;
Anderson, K .
BIOPHYSICAL JOURNAL, 2004, 87 (05) :3493-3503
[7]   Interface proliferation and the growth of labyrinths in a reaction-diffusion system [J].
Goldstein, RE ;
Muraki, DJ ;
Petrich, DM .
PHYSICAL REVIEW E, 1996, 53 (04) :3933-3957
[8]   GINZBURG-LANDAU THEORY OF OIL-WATER-SURFACTANT MIXTURES [J].
GOMPPER, G ;
ZSCHOCKE, S .
PHYSICAL REVIEW A, 1992, 46 (08) :4836-4851
[9]  
GREENSPAN D, 1959, QJMAM, V12, P111
[10]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
GREINER, A ;
STRITTMATTER, W ;
HONERKAMP, J .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) :95-108