Transport of carbon in non-green plastids

被引:62
作者
Fischer, K
Weber, A
机构
[1] Univ Cologne, Inst Bot, D-50931 Cologne, Germany
[2] Michigan State Univ, Bot & Plant Pathol Dept, E Lansing, MI 48824 USA
关键词
D O I
10.1016/S1360-1385(02)02291-4
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Non-green plastids are important sites for the biosynthesis of starch and fatty acids, which are essential for plant development and reproduction, and have a significant role in human nutrition. Unlike chloroplasts, all the metabolites for these processes in non-green plastids have to be imported via specific transport proteins. Recent advances in unravelling the molecular structures and substrate specificities of the transporters connecting the biochemical pathways between cytosol and stroma now make it possible to develop models for metabolic fluxes in these pathways. The basic principle of adapting the transport capacities of the plastid envelope to the physiological needs of the plant is the variable production of closely related transporters with overlapping substrate specificities.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 62 条
[1]   Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue [J].
Bao, XM ;
Focke, M ;
Pollard, M ;
Ohlrogge, J .
PLANT JOURNAL, 2000, 22 (01) :39-50
[2]   A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs [J].
Beckles, DM ;
Smith, AM ;
ap Rees, T .
PLANT PHYSIOLOGY, 2001, 125 (02) :818-827
[3]   SPECIFIC TRANSPORT OF INORGANIC-PHOSPHATE, GLUCOSE-6-PHOSPHATE, DIHYDROXYACETONE PHOSPHATE AND 3-PHOSPHOGLYCERATE INTO AMYLOPLASTS FROM PEA ROOTS [J].
BORCHERT, S ;
GROSSE, H ;
HELDT, HW .
FEBS LETTERS, 1989, 253 (1-2) :183-186
[4]   REDUCTANT FOR GLUTAMATE SYNTHASE IS GENERATED BY THE OXIDATIVE PENTOSE-PHOSPHATE PATHWAY IN NONPHOTOSYNTHETIC ROOT PLASTIDS [J].
BOWSHER, CG ;
BOULTON, EL ;
ROSE, JKC ;
NAYAGAM, S ;
EMES, MJ .
PLANT JOURNAL, 1992, 2 (06) :893-898
[5]   Enzymic properties and capacities of developing tomato (Lycopersicon esculentum L.) fruit plastids [J].
Büker, M ;
Schünemann, D ;
Borchert, S .
JOURNAL OF EXPERIMENTAL BOTANY, 1998, 49 (321) :681-691
[6]   ALTERATIONS IN GROWTH, PHOTOSYNTHESIS, AND RESPIRATION IN A STARCHLESS MUTANT OF ARABIDOPSIS-THALIANA (L) DEFICIENT IN CHLOROPLAST PHOSPHOGLUCOMUTASE ACTIVITY [J].
CASPAR, T ;
HUBER, SC ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1985, 79 (01) :11-17
[7]   ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit [J].
Chen, BY ;
Wang, Y ;
Janes, HW .
PLANT PHYSIOLOGY, 1998, 116 (01) :101-106
[8]   Starch metabolism in developing embryos of oilseed rape [J].
daSilva, PMFR ;
Eastmond, PJ ;
Hill, LM ;
Smith, AM ;
Rawsthorne, S .
PLANTA, 1997, 203 (04) :480-487
[9]   The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial [J].
Denyer, K ;
Dunlap, F ;
Thorbjornsen, T ;
Keeling, P ;
Smith, AM .
PLANT PHYSIOLOGY, 1996, 112 (02) :779-785
[10]   Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryo [J].
Eastmond, PJ ;
Rawsthorne, S .
PLANT PHYSIOLOGY, 2000, 122 (03) :767-774