Flaring vs. self-shadowed disks: The SEDs of Herbig Ae/Be stars

被引:411
作者
Dullemond, CP
Dominik, C
机构
[1] Max Planck Inst Astrophys, D-85741 Garching, Germany
[2] Sterrenkundig Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands
关键词
accretion; accretion disks; stars : circumstellar matter; stars : formation; stars : pre-main-sequence; infrared : stars;
D O I
10.1051/0004-6361:20031768
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Isolated Herbig Ae stars can be divided into two groups (Meeus et al. 2001): those with an almost flat spectral energy distribution in the mid-infrared ("group I"), and those with a strong decline towards the far-infrared ("group II"). In this paper we show that the group I vs. II distinction can be understood as arising from flaring vs. self-shadowed disks. We show that these two types of disks are natural solutions of the 2D radiation-hydrostatic structure equations. Disks with high optical depth turn out to be flaring and have a strong far-IR emission, while disks with an optical depth below a certain threshold drop into the shadow of their own puffed-up inner rim and are weak in the far-IR. In spite of not having a directly irradiated surface layer, self-shadowed disks still display dust features in emission, in agreement with observations Of group II Sources. We propose an evolutionary scenario in which a disk starts out with a flaring shape (group I source), and then goes through the process of grain growth, causing the optical depth of the disk to drop and the disk to become self-shadowed (group If source). We show that this scenario predicts that the (sub-)millimeter slope of the disk changes from steep (small grains) to Rayleigh-Jeans-like (large grains) in the early stages of evolution, so that all group II sources are expected to have Rayleigh-Jeans-like slopes, while some group I sources may still have steep (sub-)millimeter slopes.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 30 条
[1]   A SURVEY FOR CIRCUMSTELLAR DISKS AROUND YOUNG STELLAR OBJECTS [J].
BECKWITH, SVW ;
SARGENT, AI ;
CHINI, RS ;
GUSTEN, R .
ASTRONOMICAL JOURNAL, 1990, 99 (03) :924-945
[2]   Radiative equilibrium and temperature correction in Monte Carlo radiation transfer [J].
Bjorkman, JE ;
Wood, K .
ASTROPHYSICAL JOURNAL, 2001, 554 (01) :615-623
[3]  
Bouwman J, 2000, ASTRON ASTROPHYS, V360, P213
[4]   IRRADIATION OF ACCRETION DISKS AROUND YOUNG OBJECTS .1. NEAR-INFRARED CO BANDS [J].
CALVET, N ;
PATINO, A ;
MAGRIS, G ;
DALESSIO, P .
ASTROPHYSICAL JOURNAL, 1991, 380 (02) :617-630
[5]  
Chiang, 2000, THESIS CALTECH
[6]   Spectral energy distributions of T Tauri stars with passive circumstellar disks [J].
Chiang, EI ;
Goldreich, P .
ASTROPHYSICAL JOURNAL, 1997, 490 (01) :368-376
[7]   Spectral energy distributions of passive T Tauri and Herbig Ae disks:: Grain mineralogy, parameter dependences, and comparison with Infrared Space Observatory LWS observations [J].
Chiang, EI ;
Joung, MK ;
Creech-Eakman, MJ ;
Qi, C ;
Kessler, JE ;
Blake, GA ;
van Dishoeck, EF .
ASTROPHYSICAL JOURNAL, 2001, 547 (02) :1077-1089
[8]   Accretion disks around young objects. I. The detailed vertical structure [J].
D'Alessio, P ;
Canto, J ;
Calvet, N ;
Lizano, S .
ASTROPHYSICAL JOURNAL, 1998, 500 (01) :411-427
[9]   Accretion disks around young objects. III. Grain growth [J].
D'Alessio, P ;
Calvet, N ;
Hartmann, L .
ASTROPHYSICAL JOURNAL, 2001, 553 (01) :321-334
[10]  
DANKS A, 2001, AAS M, V199, P6014