A role for intracellular calcium in tight junction reassembly after ATP depletion-repletion

被引:60
作者
Ye, JM
Tsukamoto, T
Sun, A
Nigam, SK
机构
[1] Harvard Univ, Sch Med, Boston, MA 02115 USA
[2] Brown Univ, Rhode Isl Hosp, Div Renal, Sch Med, Providence, RI 02903 USA
[3] Brigham & Womens Hosp, Dept Med, Div Renal, Boston, MA 02115 USA
关键词
cytoskeleton; ischemia; injury; recovery; signaling;
D O I
10.1152/ajprenal.1999.277.4.F524
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The integrity of the tight junction (TJ), which is responsible for the permeability barrier of the polarized epithelium, is disrupted during ischemic injury and must be reestablished for recovery. Recently, with the use of an ATP depletion-repletion model for ischemia and reperfusion injury in Madin-Darby canine kidney cells, TJ proteins such as zonula occludens-1 (ZO-1) were shown to reversibly form large complexes and associate with cytoskeletal proteins (T. Tsukamoto and S. K. Nigam, J. Biol. Chem. 272: 16133-16139, 1997). In this study, we examined the role of intracellular calcium in TJ reassembly after ATP depletion-repletion by employing the cell-permeant calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM). Lowering intracellular calcium during ATP depletion is associated with significant inhibition of the reestablishment of the permeability barrier following ATP repletion as measured by transepithelial electrical resistance and mannitol flux, marked alterations in the subcellular localization of occludin by immunofluorescent analysis, and decreased solubility of ZO-1 and other TJ proteins by Triton X-100 extraction assay, suggesting that lowering intracellular calcium potentiates the interaction of TJ proteins with the cytoskeleton. Coimmunoprecipitation studies indicated that decreased solubility may partly result from the stabilization of large TJ protein-containing complexes with fodrin. Although ionic detergents (SDS and deoxycholate) appeared to cause a dissociation of ZO-1-containing complexes from the cytoskeleton, sucrose gradient analyses of the solubilized proteins suggested that calcium chelation leads to self-association of these complexes. Together, these results raise the possibility that intracellular calcium plays an important facilitatory role in the reassembly of the TJ damaged by ischemic insults. Calcium appears to be necessary for the dissociation of TJ-cytoskeletal complexes, thus permitting functional TJ reassembly and paracellular permeability barrier recovery.
引用
收藏
页码:F524 / F532
页数:9
相关论文
共 51 条
[1]   ASSEMBLY OF THE TIGHT JUNCTION - THE ROLE OF DIACYLGLYCEROL [J].
BALDA, MS ;
GONZALEZMARISCAL, L ;
MATTER, K ;
CEREIJIDO, M ;
ANDERSON, JM .
JOURNAL OF CELL BIOLOGY, 1993, 123 (02) :293-302
[2]   Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein [J].
Balda, MS ;
Whitney, JA ;
Flores, C ;
Gonzalez, S ;
Cereijido, M ;
Matter, K .
JOURNAL OF CELL BIOLOGY, 1996, 134 (04) :1031-1049
[3]   The spectrin-based membrane skeleton as a membrane protein-sorting machine [J].
Beck, KA ;
Nelson, WJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 270 (05) :C1263-C1270
[4]   SPECTRIN-BASED MEMBRANE SKELETON - A MULTIPOTENTIAL ADAPTER BETWEEN PLASMA-MEMBRANE AND CYTOPLASM [J].
BENNETT, V .
PHYSIOLOGICAL REVIEWS, 1990, 70 (04) :1029-1065
[5]   CINGULIN, A NEW PERIPHERAL COMPONENT OF TIGHT JUNCTIONS [J].
CITI, S ;
SABANAY, H ;
JAKES, R ;
GEIGER, B ;
KENDRICKJONES, J .
NATURE, 1988, 333 (6170) :272-276
[6]   Molecular structure and assembly of the tight junction [J].
Denker, BM ;
Nigam, SK .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1998, 274 (01) :F1-F9
[7]   Involvement of a heterotrimeric G protein alpha subunit in tight junction biogenesis [J].
Denker, BM ;
Saha, C ;
Khawaja, S ;
Nigam, SK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (42) :25750-25753
[8]   Origins of cell polarity [J].
Drubin, DG ;
Nelson, WJ .
CELL, 1996, 84 (03) :335-344
[9]   EPITHELIAL CYTOSKELETAL FRAMEWORK AND NUCLEAR MATRIX INTERMEDIATE FILAMENT SCAFFOLD - 3-DIMENSIONAL ORGANIZATION AND PROTEIN-COMPOSITION [J].
FEY, EG ;
WAN, KM ;
PENMAN, S .
JOURNAL OF CELL BIOLOGY, 1984, 98 (06) :1973-1984
[10]  
FISH EM, 1994, NEW ENGL J MED, V330, P1580