Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: Disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype

被引:300
作者
Neuhuber, B
Gallo, G
Howard, L
Kostura, L
Mackay, A
Fischer, I
机构
[1] Drexel Univ, Coll Med, Dept Neurobiol & Anat, Philadelphia, PA 19129 USA
[2] Osiris Therapeut Inc, Baltimore, MD USA
关键词
neuronal differentiation; bone marrow; mesenchymal stem cell; multipotential; transdifferentiation;
D O I
10.1002/jnr.20147
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Bone marrow stromal cells (MSC), which represent a population of multipotential mesenchymal stem cells, have been reported to undergo rapid and robust transformation into neuron-like phenotypes in vitro following treatment with chemical induction medium including dimethyl sulfoxide (DMSO; Woodbury et al. [2002] J. Neurosci. Res. 96:908). In this study, we confirmed the ability of cultured rat MSC to undergo in vitro osteogenesis, chondrogenesis, and adipogenesis, demonstrating differentiation of these cells to three mesenchymal cell fates. We then evaluated the potential for in vitro neuronal differentiation of these MSC, finding that changes in morphology upon addition of the chemical induction medium were caused by rapid disruption of the actin cytoskeleton. Retraction of the cytoplasm left behind long processes, which, although strikingly resembling neurites, showed essentially no motility and no further elaboration during time-lapse studies. Similar neurite-like processes were induced by treating MSC with DMSO only or with actin filament-depolymerizing agents. Although process formation was accompanied by rapid expression of some neuronal and glial markers, the absence of other essential neuronal proteins pointed toward aberrantly induced gene expression rather than toward a sequence of gene expression as is required for neurogenesis. Moreover, rat dermal fibroblasts responded to neuronal induction by forming similar processes and expressing similar markers. These studies do not rule out the possibility that MSC can differentiate into neurons; however, we do want to caution that in vitro differentiation protocols may have unexpected, misleading effects. A dissection of molecular signaling and commitment events may be necessary to verify the ability of MSC transdifferentiation to neuronal lineages. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:192 / 204
页数:13
相关论文
共 47 条
[1]  
Akiyama Y, 2002, J NEUROSCI, V22, P6623
[2]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[3]   TERMINAL NEUROENDOCRINE DIFFERENTIATION OF HUMAN PROSTATE CARCINOMA-CELLS IN RESPONSE TO INCREASED INTRACELLULAR CYCLIC-AMP [J].
BANG, YJ ;
PIRNIA, F ;
FANG, WG ;
KANG, WK ;
SARTOR, O ;
WHITESELL, L ;
HA, MJ ;
TSOKOS, M ;
SHEAHAN, MD ;
NGUYEN, P ;
NIKLINSKI, WT ;
MYERS, CE ;
TREPEL, JB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (12) :5330-5334
[4]  
Black MM, 1996, J NEUROSCI, V16, P3601
[5]   Embryonic stem cell-derived glial precursors:: A source of myelinating transplants [J].
Brüstle, O ;
Jones, KN ;
Learish, RD ;
Karram, K ;
Choudhary, K ;
Wiestler, OD ;
Duncan, ID ;
McKay, RDG .
SCIENCE, 1999, 285 (5428) :754-756
[6]   Treatment of neural injury with marrow stromal cells [J].
Chopp, M ;
Li, Y .
LANCET NEUROLOGY, 2002, 1 (02) :92-100
[7]  
Corti S., 2003, Current Gene Therapy, V3, P247, DOI 10.2174/1566523034578375
[8]  
Cox ME, 1999, CANCER RES, V59, P3821
[9]  
DARLING D, 1989, ONCOGENE, V4, P175
[10]   In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP [J].
Deng, WW ;
Obrocka, M ;
Fischer, I ;
Prockop, DJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 282 (01) :148-152