Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1

被引:35
作者
Maqbool, SB
Zhong, H
El-Maghraby, Y
Ahmad, A
Chai, B
Wang, W
Sabzikar, R
Sticklen, MB [1 ]
机构
[1] Michigan State Univ, Ctr Integrated Plant Syst 202, Dept Crop & Soil Sci, E Lansing, MI 48824 USA
[2] Syngenta Biotechnol Inc, Res Triangle Pk, NC 27709 USA
[3] Al Azhar Univ, Fac Sci, Dept Bot, Assiut, Egypt
[4] Michigan State Univ, Dept Microbiol, E Lansing, MI 48824 USA
关键词
oat (Avena sativa L.); hva1; bar; gus; shoot apical meristem; salt- and mannitol-stress;
D O I
10.1007/s00122-002-0984-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Three oat (Avena sativa L.) cultivars have been successfully transformed using an efficient and reproducible in vitro culture system for differentiation of multiple shoots from shoot apical meristems. The transformation was performed using microprojectile bombardment with two plasmids (pBY520 and pAct1-D) containing linked (hva1-bar) and non-linked (gus) genes. The hva1 and bar genes cointegrated with a frequency of 100% as expected, and 61.6% of the transgenic plants carried all three genes. Molecular and biochemical analyses in R0, R1 and R2 progenies confirmed stable integration and expression of all transgenes. Localization of the GUS protein in R0 and R1 plants revealed that high-expression of gus occurred in vascular tissues and in the pollen grains of mature flowers. The constitutive expression of HVA1 protein was observed at all developmental stages of transgenic plants, and was particularly stronger during the early seedling stages. R2 progeny of five independent transgenic lines was tested in vitro for tolerance to osmotic (salt and mannitol) stresses. As compared to non-transgenic control plants, transgenic plants maintained a higher growth and showed significantly (P < 0.05) increased tolerance to stress conditions. Less than 10% of transgenic plants showed symptoms of wilting or death of leaves and, when these symptoms present were delayed in transgenic plants as compared to 80% of non-transgenic plants, either wilted or died. These symptoms confirmed the increased in vitro tolerance in hva1-expressing transgenic plants to non-transgenic plants, providing strong evidence that the HVA1 protein may play an important role in the protection of oats against salinity and possible water-deficiency stress conditions.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 34 条
[1]   Shoot apical meristem:: In vitro regeneration and morphogenesis in wheat (Triticum aestivum L.) [J].
Ahmad, A ;
Zhong, H ;
Wang, WL ;
Sticklen, MB .
IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2002, 38 (02) :163-167
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures [J].
Cho, MJ ;
Jiang, W ;
Lemaux, PG .
PLANT SCIENCE, 1999, 148 (01) :9-17
[4]   In vitro morphogenesis of pearl millet [Pennisetum glaucum (L.) R.Br.]:: efficient production of multiple shoots and inflorescences from shoot apices [J].
Devi, P ;
Zhong, H ;
Sticklen, MB .
PLANT CELL REPORTS, 2000, 19 (06) :546-550
[5]   SALINE CULTURE OF CROPS - A GENETIC APPROACH [J].
EPSTEIN, E ;
NORLYN, JD ;
RUSH, DW ;
KINGSBURY, RW ;
KELLEY, DB ;
CUNNINGHAM, GA ;
WRONA, AF .
SCIENCE, 1980, 210 (4468) :399-404
[6]  
Forsberg R. A., 1989, Plant Breeding Reviews, V6, P167
[7]  
GELMOND H, 1978, PLNATS SALINE ENV, P7
[8]   MECHANISMS OF SALT TOLERANCE IN NON-HALOPHYTES [J].
GREENWAY, H ;
MUNNS, R .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1980, 31 :149-190
[9]   CLONING AND CHARACTERIZATION OF A CDNA-ENCODING A MESSENGER-RNA RAPIDLY-INDUCED BY ABA IN BARLEY ALEURONE LAYERS [J].
HONG, BM ;
UKNES, SJ ;
HO, THD .
PLANT MOLECULAR BIOLOGY, 1988, 11 (04) :495-506
[10]   DEVELOPMENTAL AND ORGAN-SPECIFIC EXPRESSION OF AN ABA-INDUCED AND STRESS-INDUCED PROTEIN IN BARLEY [J].
HONG, BM ;
BARG, R ;
HO, THD .
PLANT MOLECULAR BIOLOGY, 1992, 18 (04) :663-674