Domain perturbation for elliptic equations subject to Robin boundary conditions

被引:65
作者
Dancer, EN
Daners, D
机构
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jdeq.1997.3256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove domain perturbation theorems for linear and nonlinear elliptic equations under Robin boundary conditions. The theory allows very singular perturbation of domains. In particular, it includes cutting holes, parts degenerating to a set of measure zero such as the dumbbell problem, or wildly oscillating boundaries. In the last case we show that the limiting problem is the Dirichlet problem. (C) 1997 Academic Press.
引用
收藏
页码:86 / 132
页数:47
相关论文
共 37 条
[1]  
[Anonymous], KODAI MATH J
[2]  
[Anonymous], 1988, J FS U TOKYO IA
[3]  
[Anonymous], 1998, J NEUROSCI
[4]  
[Anonymous], WEAKLY DIFFERENTIABL
[5]  
Appell J, 1990, CAMBRIDGE TRACTS MAT, V95
[6]   RATES OF EIGENVALUES ON A DUMBBELL DOMAIN - SIMPLE EIGENVALUE CASE [J].
ARRIETA, JM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) :3503-3531
[7]   NEUMANN EIGENVALUE PROBLEMS ON EXTERIOR PERTURBATIONS OF THE DOMAIN [J].
ARRIETA, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 118 (01) :54-103
[8]   EIGENVALUE PROBLEMS FOR NONSMOOTHLY PERTURBED DOMAINS [J].
ARRIETA, JM ;
HALE, JK ;
HAN, Q .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (01) :24-52
[9]  
Babuska I., 1965, CZECH MATH J, V15, P169
[10]  
Bergh J., 1976, INTERPOLATION SPACES