Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data

被引:143
作者
Zbilut, JP
Zaldivar-Comenges, JM
Strozzi, F
机构
[1] Rush Univ, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA
[2] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21020 Ispra, VA, Italy
[3] Carlo Cattaneo Univ, Dept Engn, Quantitat Methods Grp, Castellanza, VA, Italy
关键词
Liapunov exponent; recurrence quantification; nonlinear dynamics; chaos; thermal reactions;
D O I
10.1016/S0375-9601(02)00436-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Although the use of positive Liapunov exponents has been emphasized in the context of confirmation of chaotic dynamics, their original conception concerned system stability as a qualitative feature. Using a recurrence-based algorithm, data from experimental reactions are presented for exponent use in this context. Emphasis is placed on the utility for on-line, nonstationary, noisy systems. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:173 / 181
页数:9
相关论文
共 22 条
[1]   ESTIMATING CORRELATION DIMENSION FROM A CHAOTIC TIME-SERIES - WHEN DOES PLATEAU ONSET OCCUR [J].
DING, MZ ;
GREBOGI, C ;
OTT, E ;
SAUER, T ;
YORKE, JA .
PHYSICA D, 1993, 69 (3-4) :404-424
[2]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[3]   FUNDAMENTAL LIMITATIONS FOR ESTIMATING DIMENSIONS AND LYAPUNOV EXPONENTS IN DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
RUELLE, D .
PHYSICA D, 1992, 56 (2-3) :185-187
[4]   A nonrandom dynamic component in the synaptic noise of a central neuron [J].
Faure, P ;
Korn, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) :6506-6511
[5]   INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION [J].
FRASER, AM ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1986, 33 (02) :1134-1140
[6]   Detecting nonstationarity and state transitions in a time series [J].
Gao, JB .
PHYSICAL REVIEW E, 2001, 63 (06)
[7]   On the structures and quantification of recurrence plots [J].
Gao, JB ;
Cai, HQ .
PHYSICS LETTERS A, 2000, 270 (1-2) :75-87
[8]   NONLINEAR TIME SEQUENCE ANALYSIS [J].
Grassberger, Peter ;
Schreiber, Thomas ;
Schaffrath, Carsten .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :521-547
[9]   Coping with nonstationarity by overembedding [J].
Hegger, R ;
Kantz, H ;
Matassini, L ;
Schreiber, T .
PHYSICAL REVIEW LETTERS, 2000, 84 (18) :4092-4095
[10]  
Holzfuss J., 1986, DIMENSIONS ENTROPIES, P114, DOI DOI 10.1007/978-3-642-71001-8_