Portfolios with nonlinear constraints and spin glasses

被引:17
作者
Gábor, A
Kondor, I
机构
[1] Eotvos Lorand Univ, Dept Phys Complex Syst, H-1518 Budapest, Hungary
[2] Raiffeisen Bank, H-1052 Budapest, Hungary
关键词
D O I
10.1016/S0378-4371(99)00387-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a recent paper Galluccio, Bouchaud and potters demonstrated that a certain portfolio problem with a nonlinear constraint maps exactly onto finding the ground states of a long-range spin glass, with the concomitant nonuniqueness and instability of the optimal portfolios. Here we put forward geometric arguments that lead to qualitatively similar conclusions, without recourse to the methods of spin glass theory, and give two more examples of portfolio problems with convex nonlinear constraints, (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 15 条
[1]   A LANDSCAPE THEORY OF AGGREGATION [J].
AXELROD, R ;
BENNETT, DS .
BRITISH JOURNAL OF POLITICAL SCIENCE, 1993, 23 :211-233
[2]  
Bouchaud J.-P., 1997, Theory of Financial Risks
[3]  
Elton E.J., 2007, Modern Portfolio Theory and Investment Analysis, V7th
[4]  
Fischer K. H., 1991, SPIN GLASSES
[5]  
GALAM S, IN PRESS ECONOPHYSIC
[6]   Rational decisions, random matrices and spin glasses [J].
Galluccio, S ;
Bouchaud, JP ;
Potters, M .
PHYSICA A, 1998, 259 (3-4) :449-456
[7]  
Kertesz J., 1998, Advances in Computer Simulation
[8]  
KONDOR I, UNPUB
[9]   Noise dressing of financial correlation matrices [J].
Laloux, L ;
Cizeau, P ;
Bouchaud, JP ;
Potters, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (07) :1467-1470
[10]  
Laloux L, 1999, RISK, V12, P69