Mitigation strategies for autogenous shrinkage cracking

被引:288
作者
Bentz, DP
Jensen, OM
机构
[1] Aalborg Univ, Inst Bldg Technol & Struct Engn, DK-9000 Aalborg, Denmark
[2] NIST, Bldg & Fire Res Lab, Gaithersburg, MD 20899 USA
关键词
cracking; shrinkage; concrete;
D O I
10.1016/S0958-9465(03)00045-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As the use of high-performance concrete has increased, problems with early-age cracking have become prominent. The reduction in water-to-cement ratio, the incorporation of silica fume, and the increase in binder content of high-performance concretes all contribute to this problem. In this paper, the fundamental parameters contributing to the autogenous shrinkage and resultant early-age cracking of concrete are presented. Basic characteristics of the cement paste that contribute to or control the autogenous shrinkage response include the surface tension of the pore solution, the geometry of the pore network, the visco-elastic response of the developing solid framework, and the kinetics of the cementitious reactions. While the complexity of this phenomenon may hinder a quantitative interpretation of a specific cement-based system, it also offers a wide variety of possible solutions to the problem of early-age cracking due to autogenous shrinkage. Mitigation strategies discussed in this paper include: the addition of shrinkage-reducing admixtures more commonly used to control drying shrinkage, control of the cement particle size distribution, modification of the mineralogical composition of the cement, the addition of saturated lightweight fine aggregates, the use of controlled permeability formwork, and the new concept of "water-entrained" concrete. As with any remedy, new problems may be created by the application of each of these strategies. But, with careful attention to detail in the field, it should be possible to minimize cracking due to autogenous shrinkage via some combination of the presented approaches. Published by Elsevier Ltd.
引用
收藏
页码:677 / 685
页数:9
相关论文
共 72 条
[1]  
Aitcin P.-C., 1999, Concr. Int, V21, P54
[2]  
Alberty R. A, 1980, PHYS CHEM
[3]  
ALRAWI RS, 1990, ACI STRUCT J, V87, P397
[4]   A STUDY OF ADSORPTION HYSTERESIS BY MEANS OF LENGTH CHANGES OF A ROD OF POROUS GLASS [J].
AMBERG, CH ;
MCINTOSH, R .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1952, 30 (12) :1012-1032
[5]  
[Anonymous], 1997, CONCR INT
[6]  
[Anonymous], 1947, PROC HIGHWAY RES BOA
[7]  
[Anonymous], 1999, MODERN CONCRETE MAT
[8]  
BAROGHELBOUNY V, 2000, SHRINKAGE
[9]  
Bentz D.P., 1997, Report TVBM-3075 Self-Desiccation and Its Importance in Concrete Technology, Lund University, Lund, Sweden, P132
[10]   Preliminary observations of water movement in cement pastes during curing using X-ray absorption [J].
Bentz, DP ;
Hansen, KK .
CEMENT AND CONCRETE RESEARCH, 2000, 30 (07) :1157-1168