Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model

被引:95
作者
Arriola, ER [1 ]
Broniowski, W
机构
[1] Univ Granada, Dept Fis Moderna, E-18071 Granada, Spain
[2] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland
关键词
D O I
10.1103/PhysRevD.66.094016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compute the pion light-cone wave function and the pion quark distribution amplitude in the Nambu-Jona-Lasinio model. We use the Pauli-Villars regularization method and as a result the distribution amplitude satisfies proper normalization and crossing properties. In the chiral limit we obtain the simple results, namely phi(pi)(x)=1 for the pion distribution amplitude, and integrald(2)k(perpendicular to)Psi(pi)(x,(k) over right arrow (perpendicular to))k(perpendicular to)(2)=<(k) over right arrow (2)(perpendicular to)>=-M<(u) over baru>/f(pi)(2) for the second moment of the pion light-cone wave function, where M is the constituent quark mass and f(pi) is the pion decay constant. After the QCD Gegenbauer evolution of the pion distribution amplitude good end-point behavior is recovered, and a satisfactory agreement with the analysis of the experimental data from CLEO is achieved. This allows us to determine the momentum scale corresponding to our model calculation, which is close to the value Q(0)=313 MeV obtained earlier from the analogous analysis of the pion parton distribution function. The value of <(k) over right arrow (2)(perpendicular to)> is, after the QCD evolution, around (400 MeV)(2). In addition, the model predicts a linear integral relation between the pion distribution amplitude and the parton distribution function of the pion, which holds at the leading-order QCD evolution.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Direct measurement of the pion valence-quark momentum distribution, the pion light-cone wave function squared [J].
Aitala, EM ;
Amato, S ;
Anjos, JC ;
Appel, JA ;
Ashery, D ;
Banerjee, S ;
Bediaga, I ;
Blaylock, G ;
Bracker, SB ;
Burchat, PR ;
Burnstein, RA ;
Carter, T ;
Carvalho, HS ;
Copty, NK ;
Cremaldi, LM ;
Darling, C ;
Denisenko, K ;
Deval, S ;
Fernandez, A ;
Fox, GF ;
Gagnon, P ;
Gerzon, S ;
Gobel, C ;
Gounder, K ;
Halling, AM ;
Herrera, G ;
Hurvits, G ;
James, C ;
Kasper, PA ;
Kwan, S ;
Langs, DC ;
Leslie, J ;
Lichtenstadt, J ;
Lundberg, B ;
MayTal-Beck, S ;
Meadows, B ;
Neto, JRTD ;
Mihalcea, D ;
Milburn, RH ;
de Miranda, JM ;
Napier, A ;
Nguyen, A ;
d'Oliveira, AB ;
O'Shaughnessy, K ;
Peng, KC ;
Milburn, RH ;
de Miranda, JM ;
Napier, A ;
Nguyen, A ;
d'Oliveira, AB .
PHYSICAL REVIEW LETTERS, 2001, 86 (21) :4768-4772
[2]   Baryons as chiral solitons in the Nambu-Jona-Lasinio model [J].
Alkofer, R ;
Reinhardt, H ;
Weigel, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 265 (03) :139-252
[3]  
Anikin IV, 2000, PHYS PART NUCLEI+, V31, P509
[4]   On high Q2 behavior of the pion form factor for transitions γ*γ → π0 and γ*γ* → π0 within the nonlocal quark-pion model [J].
Anikin, IV ;
Dorokhov, AE ;
Tomio, L .
PHYSICS LETTERS B, 2000, 475 (3-4) :361-371
[5]   Pion-distribution amplitude within the instanton model [J].
Anikin, IV ;
Dorokhov, AE ;
Tomio, L .
PHYSICS OF ATOMIC NUCLEI, 2001, 64 (07) :1329-1336
[6]  
ARRIOLA ER, 1991, PHYS LETT B, V253, P430, DOI 10.1016/0370-2693(91)91746-I
[7]   CHIRAL ANOMALY AND NUCLEON PROPERTIES IN THE NAMBU-JONA-LASINIO MODEL WITH VECTOR-MESONS [J].
ARRIOLA, ER ;
SALCEDO, LL .
NUCLEAR PHYSICS A, 1995, 590 (3-4) :703-734
[8]   The ρ-meson and related meson wave functions in QCD sum rules with nonlocal condensates [J].
Bakulev, AP ;
Mikhailov, SV .
PHYSICS LETTERS B, 1998, 436 (3-4) :351-362
[9]   QCD-based pion distribution amplitudes confronting experimental data [J].
Bakulev, AP ;
Mikhailov, SV ;
Stefanis, NG .
PHYSICS LETTERS B, 2001, 508 (3-4) :279-289
[10]  
BAKULEV AP, 2001, 36 RENC MOR QCD HADR