Imaging markers for Alzheimer disease Which vs how

被引:180
作者
Frisoni, Giovanni B. [1 ]
Bocchetta, Martina [1 ]
Chetelat, Gael [2 ,3 ,4 ,5 ]
Rabinovici, Gil D. [6 ]
de Leon, Mony J. [8 ]
Kaye, Jeffrey [9 ,10 ]
Reiman, Eric M. [11 ]
Scheltens, Philip [12 ,13 ]
Barkhof, Frederik [14 ,15 ]
Black, Sandra E. [16 ]
Brooks, David J. [17 ,18 ]
Carrillo, Maria C. [19 ]
Fox, Nick C. [20 ]
Herholz, Karl [21 ]
Nordberg, Agneta [22 ,23 ]
Jack, Clifford R., Jr. [24 ]
Jagust, William J. [25 ,26 ]
Johnson, Keith A. [27 ,28 ]
Rowe, Christopher C. [29 ]
Sperling, Reisa A. [27 ,28 ]
Thies, William [19 ]
Wahlund, Lars-Olof [30 ]
Weiner, Michael W. [7 ,31 ]
Pasqualetti, Patrizio [32 ,33 ]
DeCarli, Charles [7 ]
机构
[1] IRCCS, LENITEM Lab Epidemiol Neuroimaging & Telemed, Brescia, Italy
[2] INSERM, U1077, Caen, France
[3] Univ Caen Basse Normandie, UMR S1077, Caen, France
[4] Ecole Prat Hautes Etud, UMR S1077, Caen, France
[5] CHU Caen, U1077, Caen, France
[6] Univ Calif San Francisco, Dept Neurol, Memory & Aging Ctr, San Francisco, CA USA
[7] Univ Calif San Francisco, San Francisco, CA USA
[8] NYU, Sch Med, Ctr Brain Hlth, New York, NY USA
[9] Oregon Hlth & Sci Univ, Portland, OR USA
[10] Portland VA Med Ctr, Phoenix, AZ USA
[11] Banner Alzheimers Inst, Phoenix, AZ USA
[12] Vrije Univ Amsterdam, Med Ctr, Dept Neurol, Amsterdam, Netherlands
[13] Vrije Univ Amsterdam, Med Ctr, Alzheimer Ctr, Amsterdam, Netherlands
[14] Vrije Univ Amsterdam, Med Ctr, Dept Radiol, Amsterdam, Netherlands
[15] Vrije Univ Amsterdam, Med Ctr, Dept Nucl Med, Amsterdam, Netherlands
[16] Univ Toronto, Sunnybrook Res Inst, Dept Med Neurol, Toronto, ON, Canada
[17] Univ London Imperial Coll Sci Technol & Med, Fac Med, Div Brain Sci, London, England
[18] Aarhus Univ, Aarhus, Denmark
[19] Alzheimers Assoc, Med & Sci Relat, Chicago, IL USA
[20] UCL, Inst Neurol, London, England
[21] Univ Manchester, Inst Brain Behav & Mental Hlth, Wolfson Mol Imaging Ctr, Manchester, England
[22] Karolinska Inst, Karolinska Univ Hosp Huddinge, Stockholm, Sweden
[23] Karolinska Inst, Alzheimer Neurobiol Ctr, Stockholm, Sweden
[24] Mayo Clin & Mayo Fdn, Dept Diagnost Radiol, Rochester, MN USA
[25] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA USA
[26] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA USA
[27] Massachusetts Gen Hosp, Dept Neurol, Boston, MA USA
[28] Brigham & Womens Hosp, Boston, MA USA
[29] Austin Hlth, Ctr PET, Dept Nucl Med, Melbourne, Vic, Australia
[30] Karolinska Inst, Div Clin Geriatr, NVS Dept, Stockholm, Sweden
[31] San Francisco VA Med Ctr, Rome, Italy
[32] Fatebenefratelli Hosp, SeSMIT Serv Med Stat & Informat Technol, AFaR Fatebenefratelli Assoc Res, Rome, Italy
[33] IRCCS San Raffaele Pisana, Unit Clin & Mol Epidemiol, Rome, Italy
关键词
MILD COGNITIVE IMPAIRMENT; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; ASSOCIATION WORKGROUPS; REVISED CRITERIA; FDG-PET; RECOMMENDATIONS; DEMENTIA; SEGMENTATION; VALIDATION;
D O I
10.1212/WNL.0b013e31829d86e8
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Revised diagnostic criteria for Alzheimer disease (AD) acknowledge a key role of imaging biomarkers for early diagnosis. Diagnostic accuracy depends on which marker (i.e., amyloid imaging, F-18-fluorodeoxyglucose [FDG]-PET, SPECT, MRI) as well as how it is measured ("metric": visual, manual, semiautomated, or automated segmentation/computation). We evaluated diagnostic accuracy of marker vs metric in separating AD from healthy and prognostic accuracy to predict progression in mild cognitive impairment. The outcome measure was positive (negative) likelihood ratio, LR+ (LR-), defined as the ratio between the probability of positive (negative) test outcome in patients and the probability of positive (negative) test outcome in healthy controls. Diagnostic LR+ of markers was between 4.4 and 9.4 and LR- between 0.25 and 0.08, whereas prognostic LR+ and LR- were between 1.7 and 7.5, and 0.50 and 0.11, respectively. Within metrics, LRs varied up to 100-fold: LR+ from approximately 1 to 100; LR- from approximately 1.00 to 0.01. Markers accounted for 11% and 18% of diagnostic and prognostic variance of LR1 and 16% and 24% of LR-. Across all markers, metrics accounted for an equal or larger amount of variance than markers: 13% and 62% of diagnostic and prognostic variance of LR+, and 29% and 18% of LR-. Within markers, the largest proportion of diagnostic LR+ and LR- variability was within F-18-FDG-PET and MRI metrics, respectively. Diagnostic and prognostic accuracy of imaging AD biomarkers is at least as dependent on how the biomarker is measured as on the biomarker itself. Standard operating procedures are key to biomarker use in the clinical routine and drug trials.
引用
收藏
页码:487 / 500
页数:14
相关论文
共 46 条
[1]  
Albert J, 2009, USE R, P1, DOI 10.1007/978-0-387-92298-0_1
[2]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[3]   A Bayesian Semiparametric Approach for Incorporating Longitudinal Information on Exposure History for Inference in Case-Control Studies [J].
Bhadra, Dhiman ;
Daniels, Michael J. ;
Kim, Sungduk ;
Ghosh, Malay ;
Mukherjee, Bhramar .
BIOMETRICS, 2012, 68 (02) :361-370
[4]   Review and Meta-Analysis of Biomarkers and Diagnostic Imaging in Alzheimer's Disease [J].
Bloudek, Lisa M. ;
Spackman, D. Eldon ;
Blankenburg, Michael ;
Sullivan, Sean D. .
JOURNAL OF ALZHEIMERS DISEASE, 2011, 26 (04) :627-645
[5]   Effectiveness and Safety of 18F-FDG PET in the Evaluation of Dementia: A Review of the Recent Literature [J].
Bohnen, Nicolaas I. ;
Djang, David S. W. ;
Herholz, Karl ;
Anzai, Yoshimi ;
Minoshima, Satoshi .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (01) :59-71
[6]   Characterizing Alzheimer's disease using a hypometabolic convergence index [J].
Chen, Kewei ;
Ayutyanont, Napatkamon ;
Langbaum, Jessica B. S. ;
Fleisher, Adam S. ;
Reschke, Cole ;
Lee, Wendy ;
Liu, Xiaofen ;
Bandy, Dan ;
Alexander, Gene E. ;
Thompson, Paul M. ;
Shaw, Leslie ;
Trojanowski, John Q. ;
Jack, Clifford R., Jr. ;
Landau, Susan M. ;
Foster, Norman L. ;
Harvey, Danielle J. ;
Weiner, Michael W. ;
Koeppe, Robert A. ;
Jagust, William J. ;
Reiman, Eric M. .
NEUROIMAGE, 2011, 56 (01) :52-60
[7]   Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging [J].
Chetelat, G ;
Baron, JC .
NEUROIMAGE, 2003, 18 (02) :525-541
[8]   Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala:: Method and validation on controls and patients with Alzheimer's disease [J].
Chupin, Marie ;
Mukuna-Bantumbakulu, A. Romain ;
Hasboun, Dominique ;
Bardinet, Eric ;
Baillet, Sylvain ;
Kinkingnehun, Serge ;
Lemieux, Louis ;
Dubois, Bruno ;
Garnero, Line .
NEUROIMAGE, 2007, 34 (03) :996-1019
[9]  
Clark CM, 2012, LANCET NEUROL, V11, P669, DOI 10.1016/S1474-4422(12)70142-4
[10]  
Committee for Medicinal Products for Human Use (CHMP), 2012, EMACHMPSAWP892998201