Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions

被引:144
作者
Lin, KHR
Weng, CC
Lo, HF [1 ]
Chen, JT
机构
[1] Chinese Culture Univ, Dept Hort, Taipei 111, Taiwan
[2] Chinese Culture Univ, Grad Inst Biotechnol, Taipei 111, Taiwan
[3] Asia Vegetable Res & Dev Ctr, Tomato Breeding Unit, Shanhua, Taiwan
关键词
waterlogging; tomato; eggplant; ROS; antioxidant; antioxidative enzyme;
D O I
10.1016/j.plantsci.2004.04.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of our work was to study the response of antioxidative enzymes, and antioxidants of tomato and eggplant roots to waterlogged conditions. The roots of four entries, eggplants EG117 and EG203, and tomatoes TNVEG 6 and L4422 (Lycopersicon pimpinellifolium Mill), were subjected to seven flooding treatments. A split-plot design with three replications was used. The activity of APX in roots significantly increased during the period of continuous waterlogging. Slight increases in total ASA, reduced ASA, GSH, and total glutathione contents in the roots were also observed throughout the entire waterlogging period. However, the activities of CAT, SOD and GR, and the contents of ASA, GSSG and alpha-tocopherol in the roots were unaffected by waterlogging. Entries responded differently to oxidative injury according to their various antioxidative systems. The results indicate that total ASA could be involved in flooding damage to tomato roots. Overall, following the waterlogging treatments, APX activity in the eggplants was generally higher than in the tomatoes. Our work suggests that the brownish roots of tomatoes induced by flooding may be the consequence of H2O2 scavenging possibly controlled by APX activity. The H2O2 scavenging system as represented by APX was clearly limiting or less efficient in the tomatoes, leading to an accumulation of H2O2. The ability to maintain a balance between the formation and detoxification of activated oxygen species appeared likely to increase the survival potential and the tolerance of the roots against varying oxidative stress. On the basis of our observations, we conclude that increased APX activity provides plant roots with increased waterlogged stress tolerance. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 44 条
[1]   Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging [J].
Ahmed, S ;
Nawata, E ;
Hosokawa, M ;
Domae, Y ;
Sakuratani, T .
PLANT SCIENCE, 2002, 163 (01) :117-123
[2]  
ANDERSON ME, 1985, METHOD ENZYMOL, V113, P548
[3]   ASCORBATE PEROXIDASE - A HYDROGEN PEROXIDE-SCAVENGING ENZYME IN PLANTS [J].
ASADA, K .
PHYSIOLOGIA PLANTARUM, 1992, 85 (02) :235-241
[4]  
*AVRDC, 2002, ANN REP
[5]   Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings [J].
Biemelt, S ;
Keetman, U ;
Albrecht, G .
PLANT PHYSIOLOGY, 1998, 116 (02) :651-658
[6]   The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. [J].
Bor, M ;
Özdemir, F ;
Türkan, I .
PLANT SCIENCE, 2003, 164 (01) :77-84
[7]   SUPEROXIDE-DISMUTASE AND STRESS TOLERANCE [J].
BOWLER, C ;
VANMONTAGU, M ;
INZE, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :83-116
[8]   MAGNESIUM-DEFICIENCY AND HIGH LIGHT-INTENSITY ENHANCE ACTIVITIES OF SUPEROXIDE-DISMUTASE, ASCORBATE PEROXIDASE, AND GLUTATHIONE-REDUCTASE IN BEAN-LEAVES [J].
CAKMAK, I ;
MARSCHNER, H .
PLANT PHYSIOLOGY, 1992, 98 (04) :1222-1227
[9]   Antioxidant defence system in plantlets transferred from in vitro to ex vitro:: effects of increasing light intensity and CO2 concentration [J].
Carvalho, LC ;
Amâncio, S .
PLANT SCIENCE, 2002, 162 (01) :33-40
[10]   Intracellular antioxidants:: from chemical to biochemical mechanisms [J].
Chaudière, J ;
Ferrari-Iliou, R .
FOOD AND CHEMICAL TOXICOLOGY, 1999, 37 (9-10) :949-962