Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity

被引:190
作者
Li, Y
Inoki, K
Guan, KL
机构
[1] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Inst Gerontol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1128/MCB.24.18.7965-7975.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tuberous sclerosis complex (TSC) is a genetic disease caused by a mutation in either the tsc1 or tsc2 tumor suppressor gene. Recent studies have demonstrated that TSC2 displays GAP (GTPase-activating protein) activity specifically towards the small G protein Rheb and inhibits its ability to stimulate the mTOR signaling pathway. Rheb and TSC2 comprise a unique pair of GTPase and GAP, because Rheb has high basal GTP levels and TSC2 does not have the catalytic arginine finger found in Ras-GAP. To investigate the function of TSC2 and Rheb in mTOR signaling, we analyzed the TSC2-stimulated Rheb GTPase activity. We found that Arg15, a residue equivalent to Gly12 in Ras, is important for Rheb to function as a substrate for TSC2 GAP. In addition, we identified asparagine residues essential for TSC2 GAP activity. We demonstrated a novel catalytic mechanism of the TSC2 GAP and Rheb that TSC2 uses a catalytic "asparagine thumb" instead of the arginine finger found in Ras-GAP. Furthermore, we discovered that farnesylation and membrane localization of Rheb is not essential for Rheb to stimulate S6 kinase (S6K) phosphorylation. Analysis of TSC1 binding defective mutants of TSC2 shows that TSC1 is not required for the TSC2 GAP activity but may function as a regulatory component in the TSC1/TSC2 complex. Our data further demonstrate that GAP activity is essential for the cellular function of TSC2 to inhibit S6K phosphorylation.
引用
收藏
页码:7965 / 7975
页数:11
相关论文
共 59 条
[1]   Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients [J].
Au, KS ;
Rodriguez, JA ;
Finch, JL ;
Volcik, KA ;
Roach, ES ;
Delgado, MR ;
Rodriguez, E ;
Northrup, H .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 62 (02) :286-294
[2]   The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination [J].
Benvenuto, G ;
Li, SW ;
Brown, SJ ;
Braverman, R ;
Vass, WC ;
Cheadle, JP ;
Halley, DJJ ;
Sampson, JR ;
Wienecke, R ;
DeClue, JE .
ONCOGENE, 2000, 19 (54) :6306-6316
[3]   The TOR pathway: A target for cancer therapy [J].
Bjornsti, MA ;
Houghton, PJ .
NATURE REVIEWS CANCER, 2004, 4 (05) :335-348
[4]   Rap-specific GTPase activating protein follows an alternative mechanism [J].
Brinkmann, T ;
Daumke, O ;
Herbrand, U ;
Kühlmann, D ;
Stege, P ;
Ahmadian, MR ;
Wittinghofer, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (15) :12525-12531
[5]   CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO [J].
BROWN, EJ ;
BEAL, PA ;
KEITH, CT ;
CHEN, J ;
SHIN, TB ;
SCHREIBER, SL .
NATURE, 1995, 377 (6548) :441-446
[6]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[7]   Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner [J].
Castro, AF ;
Rebhun, JF ;
Clark, GJ ;
Quilliam, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (35) :32493-32496
[8]   Molecular genetic advances in tuberous sclerosis [J].
Cheadle, JP ;
Reeve, MP ;
Sampson, JR ;
Kwiatkowski, DJ .
HUMAN GENETICS, 2000, 107 (02) :97-114
[9]   GEFs: structural basis for their activation of small GTP-binding proteins [J].
Cherfils, J ;
Chardin, P .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (08) :306-311
[10]  
Clark GJ, 1997, J BIOL CHEM, V272, P10608