Structures of p38α active mutants reveal conformational changes in L16 loop that induce autophosphorylation and activation

被引:62
作者
Diskin, Ron
Lebendiker, Mario
Engelberg, David
Livnah, Oded [1 ]
机构
[1] Hebrew Univ Jerusalem, Wolfson Ctr Appl Struct Biol, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, Dept Biol Chem, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
p38; mitogen activated protein kinase; active mutants; crystal structure; dimerization;
D O I
10.1016/j.jmb.2006.08.043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
p38 mitogen-activated protein (MAP) kinases function in numerous signaling processes and are crucial for normal functions of cells and organisms. Abnormal p38 activity is associated with inflammatory diseases and cancers making the understanding of its activation mechanisms highly important. p38s are commonly activated by phosphorylation, catalyzed by MAP kinase kinases (MKKs). Moreover, it was recently revealed that the p38 alpha is also activated via alternative pathways, which are MKK independent. The structural basis of p38 activation, especially in the alternative pathways, is mostly unknown. This lack of structural data hinders the study of p38's biology as well as the development of novel strategies for p38 inhibition. We have recently discovered and optimized a novel set of intrinsically active p38 mutants whose activities are independent of any upstream activation. The high-resolution crystal structures of the intrinsically active p38 alpha mutants reveal that local alterations in the L16 loop region promote kinase activation. The L16 loop can be thus regarded as a molecular switch that upon conformational changes promotes activation. We suggest that similar conformational changes in L16 loop also occur in natural activation mechanisms of p38a in T-cells. Our biochemical studies reveal novel mechanistic insights into the activation process of p38. In this regard, the results indicate that the activation mechanism of the mutants involves dimerization and subsequent trans autophosphorylation on Thr180 (on the phosphorylation lip). Finally, we suggest a model of in vivo p38 alpha activation induced by the L16 switch with auto regulatory characteristics.
引用
收藏
页码:66 / 76
页数:11
相关论文
共 32 条
[1]   Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK [J].
Bardwell, L ;
Cook, JG ;
Voora, D ;
Baggott, DM ;
Martinez, AR ;
Thorner, J .
GENES & DEVELOPMENT, 1998, 12 (18) :2887-2898
[2]   Phosphorylation of Tyr-176 of the yeast MAPK Hog1/p38 is not vital for Hog1 biological activity [J].
Bell, M ;
Engelberg, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (17) :14603-14606
[3]   Isolation of hyperactive mutants of the MAPK p38/Hog1 that are independent of MAPK kinase activation [J].
Bell, M ;
Capone, R ;
Pashtan, I ;
Levitzki, A ;
Engelberg, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (27) :25351-25358
[4]   The structure of phosphorylated P38γ is monomeric and reveals a conserved activation-loop conformation [J].
Bellon, S ;
Fitzgibbon, MJ ;
Fox, T ;
Hsiao, HM ;
Wilson, KP .
STRUCTURE, 1999, 7 (09) :1057-1065
[5]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[6]   Activation mechanism of the MAP kinase ERK2 by dual phosphorylation [J].
Canagarajah, BJ ;
Khokhlatchev, A ;
Cobb, MH ;
Goldsmith, EJ .
CELL, 1997, 90 (05) :859-869
[7]   PARALLEL SIGNAL-PROCESSING AMONG MAMMALIAN MAPKS [J].
CANO, E ;
MAHADEVAN, LC .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :117-122
[8]   Dimerization in MAP-kinase signaling [J].
Cobb, MH ;
Goldsmith, EJ .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (01) :7-9
[9]   Active mutants of the human p38α mitogen-activated protein kinase [J].
Diskin, R ;
Askari, N ;
Capone, R ;
Engelberg, D ;
Livnah, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (45) :47040-47049
[10]   Stress-activated protein kinases - tumor suppressors or tumor initiators? [J].
Engelberg, D .
SEMINARS IN CANCER BIOLOGY, 2004, 14 (04) :271-282