Discrimination between marls and limestones using intensity data from terrestrial laser scanner

被引:111
作者
Franceschi, Marco [1 ]
Teza, Giordano [1 ]
Preto, Nereo [1 ,2 ]
Pesci, Arianna [3 ]
Galgaro, Antonio [1 ]
Girardi, Stefano [4 ]
机构
[1] Univ Padua, Dipartimento Geosci, I-35137 Padua, Italy
[2] CNR, Ist Geosci & Georisorse, I-35137 Padua, Italy
[3] Ist Nazl Geofis & Vulcanol, I-40128 Bologna, Italy
[4] Fdn Bruno Kessler, I-38050 Povo, TN, Italy
关键词
Geology; Laser scanning; TLS; Radiometric; Recognition; ORIENTATION; RESOLUTION;
D O I
10.1016/j.isprsjprs.2009.03.003
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Terrestrial Laser Scanner (TLS) is an active instrument widely used for physical surface acquisition and data modeling. TLS provides both the geometry and the intensity information of scanned objects depending on their physical and chemical properties. The intensity data can be used to discriminate different materials, since intensity is proportional, among other parameters, to the reflectance of the target at the specific wavelength of the laser beam. This article focuses on the TLS-based recognition of rocks in simple sedimentary successions mainly constituted by limestones and marls. In particular, a series of experiments with an Optech ILRIS 3D TLS was carried out to verify the feasibility of this application, as well as to solve problems in data acquisition protocol and data processing. Results indicate that a TLS intensity-based discrimination can provide reliable information about the clay content of rocks in clean outcrop conditions if the geometrical aspects of the acquisition (i.e. distance) are taken into account. Reflectance values of limestones, marls and clays show, both in controlled conditions and in the field, clear differences due to the interaction of the laser beam (having a 1535 nm wavelength) with H2O-bearing minerals and materials. Information about lithology can be therefore obtained also from real outcrops, at least if simple alternation of limestones and marls are considered. Comparison between reflectance values derived from TLS acquisition of an outcrop and the clay abundance curves obtained by gas chromatography on rock samples taken from the same stratigraphic section shows that reflectance is linked by an inverse linear relationship (correlation coefficient r = -0.85) to the abundance of clay minerals in the rocks. Reflectance series obtained from TLS data are proposed as a tool to evaluate the variation of clay content along a stratigraphic section. The possibility of linking reflectance values to lithological parameters (i.e. clay content) could provide a tool for lithological mapping of outcrops, with possible applications in various fields, ranging from petroleum geology to environmental engineering, stratigraphy and sedimentology. (C) 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:522 / 528
页数:7
相关论文
共 23 条
[1]  
Avanzini M., 2006, New Mexico Museum of Natural History and Science Bulletin, V37, P207
[2]  
AVANZINI M, 2007, QUADERNI SERVIZIO GE, V7
[3]   Digital outcrop models: Applications of terrestrial scanning lidar technology in stratigraphic modeling [J].
Bellian, JA ;
Kerans, C ;
Jennette, DC .
JOURNAL OF SEDIMENTARY RESEARCH, 2005, 75 (02) :166-176
[4]  
Bowman AW., 1997, Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, Vvol. 18
[5]  
Carrascosa M., 1985, EUROPEAN J PHYS, V6, P186
[6]   Green Chemistry: challenges and opportunities [J].
Clark, JH .
GREEN CHEMISTRY, 1999, 1 (01) :1-8
[7]   Measuring fracture orientation at exposed rock faces by using a non-reflector total station [J].
Feng, Q ;
Sjögren, P ;
Stephansson, O ;
Jing, L .
ENGINEERING GEOLOGY, 2001, 59 (1-2) :133-146
[8]  
*FLIR, 2009, FLIR THERMACAM SC640
[9]  
Hunt G.R., 1970, MODERN GEOLOGY, P283
[10]  
*INN, 2008, POLYWORKS SOFTW PACK