Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem

被引:41
作者
George, SJ [1 ]
Kvaratskhelia, M [1 ]
Dilworth, MJ [1 ]
Thorneley, RNF [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Dept Biol Chem, Norwich NR4 7UH, Norfolk, England
关键词
basidiomycete Phanerochaete chrysosporium; calcium release; electron paramagnetic resonance (EPR) spectroscopy; magnetic circular dichroism (MCD) spectroscopy; pH dependence;
D O I
10.1042/0264-6021:3440237
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phanerochaete chrysosporium lignin peroxidase isoenzyme H2 (LiP H2) exhibits a transition to a stable, inactive form at pH 9.0 with concomitant spectroscopic changes. The Soret peak intensity decreases some 55% with a red shift from 408 to 412 nm; the bands at 502 nm and 638 nm disappear and the peak at 536 nm increases. The EPR spectrum changes from a signal typical of high spin ferric haem to an exclusively low spin spectrum with g = 2.92, 2.27, 1.50. These data indicate that the active pentacoordinated haem is converted into a hexaco-ordinated species at alkaline pH. Room temperature near-IR MCD data coupled with the EPR spectrum allow us to assign the haem co-ordination of alkali-inactivated enzyme as bishistidine. Re-acidification of the alkali-inactivated enzyme to pH 6 induces further spectroscopic changes and generates an irreversibly inactivated species. By contrast, a pH shift from 9.0 to 6.0 with simultaneous addition of 50 mM CaCl2 results in the recovery of the initial activity together with the spectroscopic characteristics of the native ferric enzyme. Incubating with 50 mM CaCl2 at a pH between 6.0 and 9.0 can also re-activate the enzyme. Divalent metals other than Ca2+ do not result in restoration of activity. Experiments with Ca-45 indicate that two tightly bound calcium ions per enzyme monomer are lost during inactivation and reincorporated during subsequent re-activation, consistent with the presence of two structural Ca2+ ions in LiP H2. It is concluded that both the structural Ca2+ ions play key roles in the reversible alkaline inactivation of LIP H2.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 48 条
[1]  
BARR DP, 1994, ENVIRON SCI TECHNOL, V28, pA78, DOI [10.1021/es00051a002, 10.1021/es00051a724]
[2]   AMINO-ACID-SEQUENCE OF COPRINUS-MACRORHIZUS PEROXIDASE AND CDNA SEQUENCE ENCODING COPRINUS-CINEREUS PEROXIDASE - A NEW FAMILY OF FUNGAL PEROXIDASES [J].
BAUNSGAARD, L ;
DALBOGE, H ;
HOUEN, G ;
RASMUSSEN, EM ;
WELINDER, KG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 213 (01) :605-611
[3]   Autocatalytic formation of a hydroxy group at Cβ of Trp171 in lignin peroxidase [J].
Blodig, W ;
Doyle, WA ;
Smith, AT ;
Winterhalter, K ;
Choinowski, T ;
Piontek, K .
BIOCHEMISTRY, 1998, 37 (25) :8832-8838
[4]   LIGNIN BIODEGRADATION [J].
BUSWELL, JA ;
ODIER, E .
CRC CRITICAL REVIEWS IN BIOTECHNOLOGY, 1987, 6 (01) :1-60
[5]   MAGNETIC CIRCULAR-DICHROISM OF HEMOPROTEINS [J].
CHEESMAN, MR ;
GREENWOOD, C ;
THOMSON, AJ .
ADVANCES IN INORGANIC CHEMISTRY, 1991, 36 :201-255
[6]  
CHOINOWSKI T, 1996, THESIS ETH ZURICH
[7]   ANALYSIS OF NUCLEOTIDE-SEQUENCES OF 2 LIGNINASE CDNAS FROM A WHITE-ROT FILAMENTOUS FUNGUS, PHANEROCHAETE-CHRYSOSPORIUM [J].
DEBOER, HA ;
ZHANG, YZ ;
COLLINS, C ;
REDDY, CA .
GENE, 1987, 60 (01) :93-102
[8]   Expression of lignin peroxidase H8 in Escherichia coli: Folding and activation of the recombinant enzyme with Ca2+ and haem [J].
Doyle, WA ;
Smith, AT .
BIOCHEMICAL JOURNAL, 1996, 315 :15-19
[9]  
DUNFORD HB, 1999, HAEM PEROXIDASES, P299
[10]   CRYSTAL-STRUCTURE OF LIGNIN PEROXIDASE [J].
EDWARDS, SL ;
RAAG, R ;
WARIISHI, H ;
GOLD, MH ;
POULOS, TL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :750-754