Atmospheric correction of DAIS hyperspectral image data

被引:73
作者
Richter, R
机构
[1] DLR, Ger. Aerosp. Research Establishment, Institute for Optoelectronics
关键词
atmospheric correction; airborne hyperspectral sensors; reflectance; emissivity; surface temperature; heat fluxes;
D O I
10.1016/0098-3004(96)00016-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A software package for the atmospheric correction of airborne hyperspectral and multispectral image data has been developed at DLR. Reflective and thermal spectral channels are taken into account employing the MODTRAN code to calculate the radiative transfer. A list of four airborne sensors is included currently in a menu-driven user-friendly environment. New instruments may be added easily. This paper focuses on the algorithms employed for the processing of DAIS imagery. The DAIS is a digital airborne imaging spectrometer with 79 bands covering the optical spectrum from the visible to the thermal infrared region. Copyright (C) 1996 Elsevier Science Ltd
引用
收藏
页码:785 / 793
页数:9
相关论文
共 25 条
[1]  
BERK A, 1989, GLTR890122 GEOPH LAB
[2]   THE QUANTITATIVE USE OF AIRBORNE THEMATIC MAPPER THERMAL INFRARED DATA [J].
CALLISON, RD ;
BLAKE, P ;
ANDERSON, JM .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1987, 8 (01) :113-126
[3]  
CHANG SH, 1993, P SOC PHOTO-OPT INS, V1937, P164, DOI 10.1117/12.157053
[4]  
DAVE JV, 1980, PHOTOGRAMM ENG REM S, V46, P1173
[5]  
FROUIN R, 1990, J APPL METEOROL, V29, P448, DOI 10.1175/1520-0450(1990)029<0448:DFSOAT>2.0.CO
[6]  
2
[7]   COLUMN ATMOSPHERIC WATER-VAPOR AND VEGETATION LIQUID WATER RETRIEVALS FROM AIRBORNE IMAGING SPECTROMETER DATA [J].
GAO, BC ;
GOETZ, AFH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D4) :3549-3564
[8]  
*GER CORP, 1987, IRIS MARK 4 SPECTR H
[9]   PHYTOPLANKTON PIGMENT CONCENTRATIONS IN THE MIDDLE ATLANTIC BIGHT - COMPARISON OF SHIP DETERMINATIONS AND CZCS ESTIMATES [J].
GORDON, HR ;
CLARK, DK ;
BROWN, JW ;
BROWN, OB ;
EVANS, RH ;
BROENKOW, WW .
APPLIED OPTICS, 1983, 22 (01) :20-36
[10]  
Gower J. F. R., 1992, Canadian Journal of Remote Sensing, V18, P199