Inclined transpression

被引:189
作者
Jones, RR
Holdsworth, RE
Clegg, P
McCaffrey, K
Tavarnelli, E
机构
[1] CognIT AS, N-0257 Oslo, Norway
[2] Univ Durham, Dept Earth Sci, Reactivat Res Grp, Durham DH1 3LE, England
[3] Univ Siena, Dipartimento Sci Terra, I-53100 Siena, Italy
关键词
deformational domains; strain partitioning; transpression; triclinic strain symmetry;
D O I
10.1016/j.jsg.2004.01.004
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Inclined transpression can be defined in terms of simultaneous contraction and strike-slip and dip-slip shearing, and is illustrated here using a strain triangle in which the apices represent the three strain components. Strain matrix modelling shows that all three axes of the finite strain ellipsoid are non-parallel to the Cartesian reference frame, and that they experience complex non-planar rotations during ongoing deformation. As there is a component of vorticity about each axis of the strain ellipsoid, strains have triclinic symmetry. Providing structural fabric at least partially tracks the orientation of the finite strain ellipsoid, then both strike and dip of foliation will be oblique to zone boundaries. Pitches of stretching lineations within the fabric plane are very variable, and can change during progressive deformation. An example of an upper-crustal inclined transpression zone is exposed at Eyemouth, SE Scotland. As with most natural transpression zones, deformation at Eyemouth is highly heterogeneous, and widespread kinematic strain partitioning has given rise to an irregular distribution of strain components and resulting structures. A wide range of coeval structures are visible in outcrop and allow four different types of deformational domain to be defined. Domains are characterised by the presence or absence of dip-slip, strike-slip, oblique-slip, contractional, and hybrid structures at outcrop and map scales. Localisation of one or more types of structure occurs within deformational domains, and delineation of these can help interpretation of complex transpression zones. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1531 / 1548
页数:18
相关论文
共 60 条
[1]  
BAILEY CM, 2004, IN PRESS J STRUCTURA
[2]   Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation [J].
Beaumont, C ;
Jamieson, RA ;
Nguyen, MH ;
Lee, B .
NATURE, 2001, 414 (6865) :738-742
[3]   STRAIN PARTITIONING BETWEEN STRUCTURAL DOMAINS IN THE FORE-ARC OF THE HIKURANGI SUBDUCTION ZONE, NEW-ZEALAND [J].
CASHMAN, SM ;
KELSEY, HM ;
ERDMAN, CF ;
CUTTEN, HNC ;
BERRYMAN, KR .
TECTONICS, 1992, 11 (02) :242-257
[4]  
CLEGG P, 2002, THESIS U DURHAM
[5]   PARTITIONING OF TRANSPRESSIVE MOTIONS WITHIN A SIGMOIDAL FOLDBELT - THE VARISCAN SIERRAS AUSTRALES, ARGENTINA [J].
COBBOLD, PR ;
GAPAIS, D ;
ROSSELLO, EA .
JOURNAL OF STRUCTURAL GEOLOGY, 1991, 13 (07) :743-758
[6]  
Curtis ML, 1998, GEOL SOC SPEC PUBL, V135, P289, DOI 10.1144/GSL.SP.1998.135.01.19
[7]  
DEARMAN WR, 1962, P YORKS GEOL SOC, V33, P273
[8]  
Dewey J., 1999, J GEOLOGICAL SOC LON, V156, P1048, DOI DOI 10.1144/GSJGS.156.5.1045
[9]  
DEWEY JF, 1975, AM J SCI, VA275, P260
[10]  
Dewey JF, 1998, GEOL SOC SPEC PUBL, V135, P1, DOI 10.1144/GSL.SP.1998.135.01.01