A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations

被引:88
作者
Cai, ZQ
Douglas, J
Ye, X
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
关键词
Finite Element Method; Error Estimate; Stokes Equation; Elliptic Equation; Optimal Error;
D O I
10.1007/s100920050031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Douglas ct al. [4] introduced a new, low-order, nonconforming rectangular element for scalar elliptic equations. Here, we apply this element in the approximation of each component of the velocity in the stationary Stokes and Navier-Stokes equations, along with a piecewise-constant element for the pressure. We obtain a stable element in both cases for which optimal error estimates for the approximation of both the velocity and pressure in L-2 can be established, as well as one in a broken H-1-norm for the velocity.
引用
收藏
页码:215 / 232
页数:18
相关论文
共 10 条
[1]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[2]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[3]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[4]  
DOUGLAS J, IN PRESS MATH ANAL N
[5]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[6]  
Han HD., 1984, J COMPUT MATH, V2, P223
[7]   REGULARITY RESULT FOR STOKES PROBLEM IN A CONVEX POLYGON [J].
KELLOGG, RB ;
OSBORN, JE .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 21 (04) :397-431
[8]  
Ladyzhenskaya O. A., 1963, The mathematical theory of viscous incompressible flow
[9]  
Rannacher R., 1992, Numer. Meth. Partial Differ. Equ, V8, P97, DOI DOI 10.1002/num.1690080202
[10]  
ZINE A, 1984, THESIS U PARIS