Cystic fibrosis enters the proteomics scene: New answers to old questions

被引:38
作者
Ollero, Mario
Brouillard, Franck
Edelman, Aleksander
机构
[1] Fac Med, INSERM U806, F-75015 Paris, France
[2] Univ Paris 05, Fac Med Rene Descartes, Plateau Proteomes IFR94, Paris, France
关键词
biomarkers; CFTR chloride channel; disease; epithelium; interactomics;
D O I
10.1002/pmic.200600028
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The discovery in 1989 of the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) and its mutation as the primary cause of cystic fibrosis (CF), generated an optimistic reaction with respect to the development of potential therapies. This extraordinary milestone, however, represented only the initial key step in a long path. Many of the mechanisms that govern the pathogenesis of CF, the most commonly inherited lethal pulmonary disorder in Caucasians, remain even today unknown. As a continuation to genomic research, proteomics now offers the unique advantage to examine global alterations in the protein expression patterns of CF cells and tissues. The systematic use of this approach will probably provide new insights into the cellular mechanisms involved in CF dysfunctions, and should ultimately result in the finding of new prognostic markers, and in the generation of new therapies. In this article we review the current status of proteomic research applied to the study of CF, including CFTR-related interactomics, and evaluate the potential of these technologies for future investigations.
引用
收藏
页码:4084 / 4099
页数:16
相关论文
共 96 条
[1]   Seeking modifier genes in cystic fibrosis [J].
Accurso, FJ ;
Sontag, MK .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2003, 167 (03) :289-290
[2]   Processing of CFTR: Traversing the cellular maze - How much CFTR needs to go through to avoid cystic fibrosis? [J].
Amaral, MD .
PEDIATRIC PULMONOLOGY, 2005, 39 (06) :479-491
[3]   A comparison of selected mRNA and protein abundances in human liver [J].
Anderson, L ;
Seilhamer, J .
ELECTROPHORESIS, 1997, 18 (3-4) :533-537
[4]   High resolution mass spectrometric alveolar proteomics: Identification of surfactant protein SP-A and SP-D modifications in proteinosis and cystic fibrosis patients [J].
Bai, Y ;
Galetskiy, D ;
Damoc, E ;
Paschen, C ;
Liu, ZQ ;
Griese, M ;
Liu, SY ;
Przybylski, M .
PROTEOMICS, 2004, 4 (08) :2300-2309
[5]   Down-regulation of the anti-inflammatory protein annexin A1 in cystic fibrosis knock-out mice and patients [J].
Bensalem, N ;
Ventura, AP ;
Vallée, B ;
Lipecka, J ;
Tondelier, D ;
Davezac, N ;
Dos Santos, A ;
Perretti, M ;
Fajac, A ;
Sermet-Gaudelus, I ;
Renouil, M ;
Lesure, JF ;
Halgand, F ;
Laprévote, O ;
Edelman, A .
MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (10) :1591-1601
[6]  
BENSALEM N, 2005, PEDIATR PULM, V28, P272
[7]   Syntaxin 8 impairs trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) and inhibits its channel activity [J].
Bilan, F ;
Thoreau, V ;
Nacfer, M ;
Dérand, R ;
Norez, C ;
Cantereau, A ;
Garcia, M ;
Becq, F ;
Kitzis, A .
JOURNAL OF CELL SCIENCE, 2004, 117 (10) :1923-1935
[8]   Global analysis of the membrane subproteome of Pseudomonas aeruginosa using liquid chromatography-tandem mass [J].
Blonder, J ;
Goshe, MB ;
Xiao, WZ ;
Camp, DG ;
Wingerd, M ;
Davis, RW ;
Smith, RD .
JOURNAL OF PROTEOME RESEARCH, 2004, 3 (03) :434-444
[9]   S100A8 chemotactic protein is abundantly increased, but only a minor contributor to LPS-induced, steroid resistant neutrophilic lung inflammation in vivo [J].
Bozinovski, S ;
Cross, M ;
Vlahos, R ;
Jones, JE ;
Hsuu, K ;
Tessier, PA ;
Reynolds, EC ;
Hume, DA ;
Hamilton, JA ;
Geczy, CL ;
Anderson, GP .
JOURNAL OF PROTEOME RESEARCH, 2005, 4 (01) :136-145
[10]   Blue native/SDS-PAGE analysis reveals reduced expression of the mClCA3 protein in cystic fibrosis knock-out mice [J].
Brouillard, F ;
Bensalem, N ;
Hinzpeter, A ;
Tondelier, D ;
Trudel, S ;
Gruber, AD ;
Ollero, M ;
Edelman, A .
MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (11) :1762-1775