Optimal simulation of two-qubit Hamiltonians using general local operations

被引:87
作者
Bennett, CH
Cirac, JI
Leifer, MS
Leung, DW
Linden, N
Popescu, S
Vidal, G
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[3] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[4] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[5] Hewlett Packard Labs, BRIMS, Bristol BS12 6QZ, Avon, England
[6] CALTECH, IQI, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2002年 / 66卷 / 01期
关键词
D O I
10.1103/PhysRevA.66.012305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the simulation of the dynamics of one nonlocal Hamiltonian by another, allowing arbitrary local resources but no entanglement or classical communication. We characterize notions of simulation, and proceed to focus on deterministic simulation involving one copy of the system. More specifically, two otherwise isolated systems A and B interact by a nonlocal Hamiltonian Hnot equalH(A)+H-B. We consider the achievable space of Hamiltonians H-' such that the evolution e(-iH')t can be simulated by the interaction H interspersed with local operations. For any dimensions of A and B, and any nonlocal Hamiltonians H and H-', there exists a scale factor s such that for all times t the evolution e(-iH')st can be simulated by H acting for time t interspersed with local operations. For two-qubit Hamiltonians H and H-', we calculate the optimal s and give protocols achieving it. The optimal protocols do not require local ancillas, and can be understood geometrically in terms of a polyhedron defined by a partial order on the set of two-qubit Hamiltonians.
引用
收藏
页码:123051 / 1230516
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 1996, Matrix Analysis
[2]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[3]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[4]  
BENNETT CH, 1997, UNPUB 6 QUANT COMP W
[5]  
CHEN H, QUANTPH0109115
[6]  
DODD JL, QUANTPH0106064
[7]   Entanglement capabilities of nonlocal Hamiltonians -: art. no. 137901 [J].
Dür, W ;
Vidal, G ;
Cirac, JI ;
Linden, N ;
Popescu, S .
PHYSICAL REVIEW LETTERS, 2001, 87 (13) :137901-1
[8]  
GOTTESMAN D, QUANTPH9705052
[9]  
Gottesman D, 1997, THESIS CALIFORNIA I
[10]  
JANZING D, QUANTPH0108053