The effective temperature scale of giant stars (F0-K5) I.: The effective temperature determination by means of the IRFM

被引:106
作者
Alonso, A [1 ]
Arribas, S [1 ]
Martínez-Roger, C [1 ]
机构
[1] Inst Astrofis Canarias, E-38200 La Laguna, Tenerife, Spain
来源
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES | 1999年 / 139卷 / 02期
关键词
stars : fundamental parameters; stars : Population II; stars : atmospheres; stars : general;
D O I
10.1051/aas:1999506
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have applied the InfraRed Flux Method (IRFM) to a sample of approximately 500 giant stars in order to derive their effective temperatures with an internal mean accuracy of about 1.5% and a maximum uncertainty in the zero point of the order of 0.9%. For the application of the IRFM, we have used a homogeneous grid of theoretical model atmosphere flux distributions developed by Kurucz (1993). The atmospheric parameters of the stars roughly cover the ranges: 3500 K less than or equal to T-eff less than or equal to 8000 K; -3.0 less than or equal to [Fe/H] less than or equal to +0.5; 0.5 less than or equal to log(g) less than or equal to 3.5. The monochromatic infrared fluxes at the continuum are based on recent photometry with errors that satisfy the accuracy requirements of the work. We have derived the bolometric correction of giant stars by using a new calibration which takes the effect of metallicity into account. Direct spectroscopic determinations of metallicity have been adopted where available: although estimates based on photometric calibrations have been considered for some stars lacking spectroscopic ones. The adopted infrared absolute flux calibration, based on direct optical measurements of stellar angular diameters, puts the effective temperatures determined in this work in the same scale as those obtained by direct methods. We have derived up to four temperatures, T-J, T-H, T-K and T-L', for each star using the monochromatic fluxes at different infrared wavelengths in the photometric bands J, H, K and L'. They show good consistency over 4000 K, and there is no appreciable trend with wavelength, metallicity and/or temperature. We provide a detailed description of the steps followed for the application of the IRFM, as well as the sources of error and their effect on final temperatures. We also provide a comparison of the results with previous work.
引用
收藏
页码:335 / 358
页数:24
相关论文
共 53 条
[1]  
ALONSO A, 1995, ASTRON ASTROPHYS, V297, P197
[2]   Broad-band JHK(L′) photometry of a sample of giants with 0.5>[Fe/H]>-3 [J].
Alonso, A ;
Arribas, S ;
Martinez-Roger, C .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 131 (02) :209-219
[3]   Determination of effective temperatures for an extended sample of dwarfs and subdwarfs (F0-K5) [J].
Alonso, A ;
Arribas, S ;
MartinezRoger, C .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 117 (02) :227-254
[4]  
Alonso A, 1996, ASTRON ASTROPHYS, V313, P873
[5]  
ALONSO A, 1994, ASTRON ASTROPHYS, V282, P684
[6]  
ALONSO A, 1994, ASTRON ASTROPHYS SUP, V107, P365
[7]   REDDENING ESTIMATION FOR HALO RED GIANTS USING UVBY PHOTOMETRY [J].
ANTHONYTWAROG, BJ ;
TWAROG, BA .
ASTRONOMICAL JOURNAL, 1994, 107 (04) :1577-1590
[8]  
ARRIBAS S, 1991, ASTRON ASTROPHYS SUP, V88, P19
[9]  
ARRIBAS S, 1987, A A, V178, P107
[10]   GLOBULAR-CLUSTER ISOCHRONES IN THE INFRARED [J].
BELL, RA .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1992, 257 (03) :423-432