A simple method for probing the mechanical unfolding pathway of proteins in detail

被引:76
作者
Best, RB [1 ]
Fowler, SB [1 ]
Toca-Herrera, JL [1 ]
Clarke, J [1 ]
机构
[1] Med Res Council Ctr Protein Engn, Dept Chem, Cambridge CB2 1EW, England
基金
英国惠康基金;
关键词
D O I
10.1073/pnas.192351899
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atomic force microscopy is an exciting new single-molecule technique to add to the toolbox of protein (un)folding methods. However, detailed analysis of the unfolding of proteins on application of force has, to date, relied on protein molecular dynamics simulations or a qualitative interpretation of mutant data. Here we describe how protein engineering (D value analysis can be adapted to characterize the transition states for mechanical unfolding of proteins. Single-molecule studies also have an advantage over bulk experiments, in that partial Phi values arising from partial structure in the transition state can be clearly distinguished from those averaged over alternate pathways. We show that unfolding rate constants derived in the standard way by using Monte Carlo simulations are not reliable because of the errors involved. However, it is possible to circumvent these problems, providing the unfolding mechanism is not changed by mutation, either by a modification of the Monte Carlo procedure or by comparing mutant and wild-type data directly. The applicability of the method is tested on simulated data sets and experimental data for mutants of titin 127.
引用
收藏
页码:12143 / 12148
页数:6
相关论文
共 32 条
[1]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[2]   What can atomic force microscopy tell us about protein folding? [J].
Best, RB ;
Clarke, J .
CHEMICAL COMMUNICATIONS, 2002, (03) :183-192
[3]   Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation [J].
Best, RB ;
Li, B ;
Steward, A ;
Daggett, V ;
Clarke, J .
BIOPHYSICAL JOURNAL, 2001, 81 (04) :2344-2356
[4]   The effect of core destabilization on the mechanical resistance of I27 [J].
Brockwell, DJ ;
Beddard, GS ;
Clarkson, J ;
Zinober, RC ;
Blake, AW ;
Trinick, J ;
Olmsted, PD ;
Smith, DA ;
Radford, SE .
BIOPHYSICAL JOURNAL, 2002, 83 (01) :458-472
[5]   Im7 folding mechanism: misfolding on a path to the native state [J].
Capaldi, AP ;
Kleanthous, C ;
Radford, SE .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (03) :209-216
[6]   Dynamic strength of molecular adhesion bonds [J].
Evans, E ;
Ritchie, K .
BIOPHYSICAL JOURNAL, 1997, 72 (04) :1541-1555
[7]   Strength of a weak bond connecting flexible polymer chains [J].
Evans, E ;
Ritchie, K .
BIOPHYSICAL JOURNAL, 1999, 76 (05) :2439-2447
[8]   Probing the relation between force - Lifetime - and chemistry in single molecular bonds [J].
Evans, E .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2001, 30 :105-128
[9]   Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force [J].
Evans, E ;
Leung, A ;
Hammer, D ;
Simon, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :3784-3789
[10]   THE FOLDING OF AN ENZYME .1. THEORY OF PROTEIN ENGINEERING ANALYSIS OF STABILITY AND PATHWAY OF PROTEIN FOLDING [J].
FERSHT, AR ;
MATOUSCHEK, A ;
SERRANO, L .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (03) :771-782