Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress

被引:97
作者
Gururani, Mayank Anand [1 ]
Mohanta, Tapan Kumar [1 ]
Bae, Hanhong [1 ]
机构
[1] Yeungnam Univ, Sch Biotechnol, Kyongsan 712749, Gyeongbook, South Korea
关键词
environmental stress; phytohormones; photosystem II (PSII) repairing system; photosystem II; stress tolerance; TRANSGENIC POTATO PLANTS; A/B-BINDING PROTEINS; ORYZA-SATIVA L; ZEA-MAYS L; ABSCISIC-ACID; SALICYLIC-ACID; PHOTOSYSTEM-II; ABIOTIC STRESS; GIBBERELLIC-ACID; DROUGHT STRESS;
D O I
10.3390/ijms160819055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS) generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants' responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers fromelucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research.
引用
收藏
页码:19055 / 19085
页数:31
相关论文
共 206 条
[21]   Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress [J].
Bartoli, Carlos G. ;
Casalongue, Claudia A. ;
Simontacchi, Marcela ;
Marquez-Garcia, Belen ;
Foyer, Christine H. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 94 :73-88
[22]   Interactions between abscisic acid and ethylene signaling cascades [J].
Beaudoin, N ;
Serizet, C ;
Gosti, F ;
Giraudat, J .
PLANT CELL, 2000, 12 (07) :1103-1115
[23]   Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants [J].
Biemelt, S ;
Tschiersch, H ;
Sonnewald, U .
PLANT PHYSIOLOGY, 2004, 135 (01) :254-265
[24]   The origin and evolution of oxygenic photosynthesis [J].
Blankenship, RE ;
Hartman, H .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (03) :94-97
[25]   ABSCISIC-ACID NEGATIVELY REGULATES EXPRESSION OF CHLOROPHYLL A/B BINDING-PROTEIN GENES DURING SOYBEAN EMBRYOGENY [J].
CHANG, YC ;
WALLING, LL .
PLANT PHYSIOLOGY, 1991, 97 (03) :1260-1264
[26]   Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications [J].
Chen, Tony H. H. ;
Murata, Norio .
PLANT CELL AND ENVIRONMENT, 2011, 34 (01) :1-20
[27]   Effect of salicylic acid pretreatment on drought stress responses of zoysiagrass (Zoysia japonica) [J].
Chen, Z. L. ;
Li, X. M. ;
Zhang, L. H. .
RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2014, 61 (05) :619-625
[28]   Positive regulatory role of strigolactone in plant responses to drought and salt stress [J].
Chien Van Ha ;
Antonio Leyva-Gonzalez, Marco ;
Osakabe, Yuriko ;
Uyen Thi Tran ;
Nishiyama, Rie ;
Watanabe, Yasuko ;
Tanaka, Maho ;
Seki, Motoaki ;
Yamaguchi, Shinjiro ;
Nguyen Van Dong ;
Yamaguchi-Shinozaki, Kazuko ;
Shinozaki, Kazuo ;
Herrera-Estrella, Luis ;
Lam-Son Phan Tran .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (02) :851-856
[29]   Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes [J].
Coles, JP ;
Phillips, AL ;
Croker, SJ ;
García-Lepe, R ;
Lewis, MJ ;
Hedden, P .
PLANT JOURNAL, 1999, 17 (05) :547-556
[30]   A Novel Protective Function for Cytokinin in the Light Stress Response Is Mediated by the ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3 Receptors [J].
Cortleven, Anne ;
Nitschke, Silvia ;
Klaumuenzer, Marion ;
AbdElgawad, Hamada ;
Asard, Han ;
Grimm, Bernhard ;
Riefler, Michael ;
Schmuelling, Thomas .
PLANT PHYSIOLOGY, 2014, 164 (03) :1470-1483