Biofortification and phytoremediation

被引:226
作者
Zhao, Fang-Jie [1 ]
McGrath, Steve P. [1 ]
机构
[1] Rothamsted Res, Harpenden AL5 2JQ, Herts, England
关键词
QUANTITATIVE TRAIT LOCUS; INDIAN MUSTARD; THLASPI-CAERULESCENS; SELENOCYSTEINE METHYLTRANSFERASE; SELENIUM TOLERANCE; ZINC BIOFORTIFICATION; ARSENATE REDUCTASE; CONTAMINATED SOILS; TRANSGENIC PLANTS; HUMAN LACTOFERRIN;
D O I
10.1016/j.pbi.2009.04.005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Producing nutritious and safe foods sufficiently and sustainably is the ultimate goal of modern agriculture. Past efforts have focused on increasing crop yields, but enhancing the concentrations of mineral micronutrients has become an urgent task because about half of the world population suffers from the malnutrition of iron, zinc, and selenium. Biofortification of these trace elements can be achieved through fertilization, crop breeding or biotechnology. On the other hand, soils contaminated with metals or metalloids may be cleaned up by phytoextraction that combines hyperaccumulation with high biomass production. Progress has been made in identifying inter-species and intra-species variation in trace element accumulation, and mechanistic understanding of some aspects of trace element transport and homeostasis in plants, but much remains to be elucidated.
引用
收藏
页码:373 / 380
页数:8
相关论文
共 85 条
[1]   Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment [J].
Bañuelos, G ;
Terry, N ;
Leduc, DL ;
Pilon-Smits, EAH ;
Mackey, B .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (06) :1771-1777
[2]   Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions [J].
Banuelos, Gary ;
LeDuc, Danika L. ;
Pilon-Smits, Elizabeth A. H. ;
Terry, Norman .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (02) :599-605
[3]   Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents [J].
Blaylock, MJ ;
Salt, DE ;
Dushenkov, S ;
Zakharova, O ;
Gussman, C ;
Kapulnik, Y ;
Ensley, BD ;
Raskin, I .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (03) :860-865
[4]   Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus [J].
Bleeker, PM ;
Hakvoort, HWJ ;
Bliek, M ;
Souer, E ;
Schat, H .
PLANT JOURNAL, 2006, 45 (06) :917-929
[5]   Heat-stable phytases in transgenic wheat (Triticum aestivum l.):: Deposition pattern, thermostability, and phytate hydrolysis [J].
Brinch-Pedersen, H ;
Hatzack, F ;
Stöger, E ;
Arcalis, E ;
Pontopidan, K ;
Holm, PB .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2006, 54 (13) :4624-4632
[6]   Molecular genetic approaches to increasing mineral availability and vitamin content of cereals [J].
Brinch-Pedersen, Henrik ;
Borg, Soren ;
Tauris, Birgitte ;
Holm, Preben B. .
JOURNAL OF CEREAL SCIENCE, 2007, 46 (03) :308-326
[7]   Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? [J].
Cakmak, Ismail .
PLANT AND SOIL, 2008, 302 (1-2) :1-17
[8]   Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies [J].
Chaney, Rufus L. ;
Angle, J. Scott ;
Broadhurst, C. Leigh ;
Peters, Carinne A. ;
Tappero, Ryan V. ;
Sparks, Donald L. .
JOURNAL OF ENVIRONMENTAL QUALITY, 2007, 36 (05) :1429-1443
[9]   A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase [J].
Courbot, Mikael ;
Willems, Glenda ;
Motte, Patrick ;
Arvidsson, Samuel ;
Roosens, Nancy ;
Saumitou-Laprade, Pierre ;
Verbruggen, Nathalie .
PLANT PHYSIOLOGY, 2007, 144 (02) :1052-1065
[10]   Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake [J].
Curie, C ;
Panaviene, Z ;
Loulergue, C ;
Dellaporta, SL ;
Briat, JF ;
Walker, EL .
NATURE, 2001, 409 (6818) :346-349