Epigenetics of imprinted long noncoding RNAs

被引:108
作者
Mohammad, Faizaan [1 ]
Mondal, Tanmoy [1 ]
Kanduri, Chandrasekhar [1 ]
机构
[1] Uppsala Univ, Dept Genet & Pathol, Rudbeck Lab, Uppsala, Sweden
基金
英国医学研究理事会; 瑞典研究理事会;
关键词
noncoding RNA; epigenetics; chromatin; genomic imprinting; X-chromosome inactivation; Kcnq1ot1; air; xist; X-CHROMOSOME INACTIVATION; CHROMATIN CONFORMATION; ANTISENSE PROMOTER; GENE-REGULATION; XIST GENE; METHYLATION; TRANSCRIPT; CTCF; EXPRESSION; INSULATOR;
D O I
10.4161/epi.4.5.9242
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It is becoming increasingly evident that noncoding RNA (ncRNA) constitutes an important component of chromatin and that ncRNA has a critical role in organizing the chromatin architecture and epigenetic memory by acting as an interface with the chromatin modifying machinery. Xist is the only RNA that has been shown to regulate gene expression by modulating chromatin structure using a multilayered silencing pathway. Recent emerging evidence indicates that long ncRNAs such as Kcnq1ot1 and Air which map to the Kcnq1 and Igf2r imprinted gene clusters, respectively, mediate the transcriptional silencing of multiple genes by interacting with chromatin and recruiting the chromatin modifying machinery. Though there are some parallels in the mechanistic actions of Kcnq1ot1 and Air, they seem to differ greatly in the way they achieve the silencing of overlapping and nonoverlapping genes. By reviewing the latest available evidence, we propose that Kcnq1ot1 RNA itself seems to play a critical role in the bidirectional silencing of genes in the Kcnq1 domain, thus resembling the Xist RNA; whereas in the case of Air, the act of transcription plays a critical role in the silencing of the overlapping gene, whilst Air RNA itself mediates the silencing of nonoverlapping genes in a fashion similar to Kcnq1ot1 and Xist RNAs.
引用
收藏
页码:277 / 286
页数:10
相关论文
共 64 条
[1]   RNA-directed transcriptional gene silencing in mammals [J].
Bayne, EH ;
Allshire, RC .
TRENDS IN GENETICS, 2005, 21 (07) :370-373
[2]   Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene [J].
Bell, AC ;
Felsenfeld, G .
NATURE, 2000, 405 (6785) :482-485
[3]   RNA meets chromatin [J].
Bernstein, E ;
Allis, CD .
GENES & DEVELOPMENT, 2005, 19 (14) :1635-1655
[4]   The long and the short of noncoding RNAs [J].
Brosnan, Christopher A. ;
Voinnet, Olivier .
CURRENT OPINION IN CELL BIOLOGY, 2009, 21 (03) :416-425
[5]   Transcriptional interference between convergent promoters caused by elongation over the promoter [J].
Callen, BP ;
Shearwin, KE ;
Egan, JB .
MOLECULAR CELL, 2004, 14 (05) :647-656
[6]   Transcription is required for establishment of germline methylation marks at imprinted genes [J].
Chotalia, Mita ;
Smallwood, Sebastien A. ;
Ruf, Nico ;
Dawson, Claire ;
Lucifero, Diana ;
Frontera, Marga ;
James, Katherine ;
Dean, Wendy ;
Kelsey, Gavin .
GENES & DEVELOPMENT, 2009, 23 (01) :105-117
[7]   Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1 [J].
Fitzpatrick, GV ;
Soloway, PD ;
Higgins, MJ .
NATURE GENETICS, 2002, 32 (03) :426-431
[8]   The Drosha-DGCR8 complex in primary microRNA processing [J].
Han, JJ ;
Lee, Y ;
Yeom, KH ;
Kim, YK ;
Jin, H ;
Kim, VN .
GENES & DEVELOPMENT, 2004, 18 (24) :3016-3027
[9]   CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus [J].
Hark, AT ;
Schoenherr, CJ ;
Katz, DJ ;
Ingram, RS ;
Levorse, JM ;
Tilghman, SM .
NATURE, 2000, 405 (6785) :486-489
[10]   Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation [J].
Heard, E ;
Rougeulle, C ;
Arnaud, D ;
Avner, P ;
Allis, CD ;
Spector, DL .
CELL, 2001, 107 (06) :727-738