A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression

被引:65
作者
Conour, JE
Graham, WV
Gaskins, HR
机构
[1] Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Vet Pathol, Urbana, IL 61801 USA
[3] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
关键词
redox regulation; bioinformatics;
D O I
10.1152/physiolgenomics.00058.2004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The intracellular reduction-oxidation ( redox) environment influences cell cycle progression; however, underlying mechanisms are poorly understood. To examine potential mechanisms, the intracellular redox environment was characterized per cell cycle phase in Chinese hamster ovary fibroblasts via flow cytometry by measuring reduced glutathione (GSH), reactive oxygen species (ROS), and DNA content with monochlorobimane, 2', 7'-dichlorohydrofluorescein diacetate (H(2)DCFDA), and DRAQ5, respectively. GSH content was significantly greater in G(2)/M compared with G(1) phase cells, whereas GSH was intermediate in S phase cells. ROS content was similar among phases. Together, these data demonstrate that G(2)/M cells are more reduced than G(1) cells. Conventional approaches to define regulatory mechanisms are subjective in nature and focus on single proteins/pathways. Proteome databases provide a means to overcome these inherent limitations. Therefore, a novel bioinformatic approach was developed to exhaustively identify putative redox-regulated cell cycle proteins containing redox-sensitive protein motifs. Using the InterPro (http://www.ebi.ac.uk/interpro/) database, we categorized 536 redox-sensitive motifs as: 1) active/functional-site cysteines, 2) electron transport, 3) heme, 4) iron binding, 5) zinc binding, 6) metal binding (non-Fe/Zn), and 7) disulfides. Comparing this list with 1,634 cell cycle-associated proteins from Swiss-Prot and SpTrEMBL (http://us.expasy.org/sprot/) revealed 92 candidate proteins. Three-fourths ( 69 of 92) of the candidate proteins function in the central cell cycle processes of transcription, nucleotide metabolism, (de) phosphorylation, and (de)ubiquitinylation. The majority of oxidant-sensitive candidate proteins (68.9%) function during G(2)/M phase. As the G(2)/M phase is more reduced than the G(1) phase, oxidant-sensitive proteins may be temporally regulated by oscillation of the intracellular redox environment. Combined with evidence of intracellular redox compartmentalization, we propose a spatiotemporal mechanism that functionally links an oscillating intracellular redox environment with cell cycle progression.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 66 条
[1]   REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO [J].
ABATE, C ;
PATEL, L ;
RAUSCHER, FJ ;
CURRAN, T .
SCIENCE, 1990, 249 (4973) :1157-1161
[2]   The crystal structure of an azide complex of the diferrous R2 subunit of ribonucleotide reductase displays a novel carboxylate shift with important mechanistic implications for diiron-catalyzed oxygen activation [J].
Andersson, ME ;
Högbom, M ;
Rinaldo-Matthis, A ;
Andersson, KK ;
Sjoberg, BM ;
Nordlund, P .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (11) :2346-2352
[3]   The InterPro database, an integrated documentation resource for protein families, domains and functional sites [J].
Apweiler, R ;
Attwood, TK ;
Bairoch, A ;
Bateman, A ;
Birney, E ;
Biswas, M ;
Bucher, P ;
Cerutti, T ;
Corpet, F ;
Croning, MDR ;
Durbin, R ;
Falquet, L ;
Fleischmann, W ;
Gouzy, J ;
Hermjakob, H ;
Hulo, N ;
Jonassen, I ;
Kahn, D ;
Kanapin, A ;
Karavidopoulou, Y ;
Lopez, R ;
Marx, B ;
Mulder, NJ ;
Oinn, TM ;
Pagni, M ;
Servant, F ;
Sigrist, CJA ;
Zdobnov, EM .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :37-40
[4]   The biochemistry of selenium and the glutathione system [J].
Arteel, GE ;
Sies, H .
ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2001, 10 (04) :153-158
[5]   The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :45-48
[6]   DEMONSTRATION OF NUCLEAR COMPARTMENTALIZATION OF GLUTATHIONE IN HEPATOCYTES [J].
BELLOMO, G ;
VAIRETTI, M ;
STIVALA, L ;
MIRABELLI, F ;
RICHELMI, P ;
ORRENIUS, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (10) :4412-4416
[7]   Protein kinase C-mediated regulation of the cell cycle [J].
Black, JD .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2000, 5 :D406-D423
[8]   Molecular characterization of the hdm2-p53 interaction [J].
Bottger, A ;
Bottger, V ;
GarciaEcheverria, C ;
Chene, P ;
Hochkeppel, HK ;
Sampson, W ;
Ang, K ;
Howard, SF ;
Picksley, SM ;
Lane, DP .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 269 (05) :744-756
[9]   Redox regulation of p53 during hypoxia [J].
Chandel, NS ;
Vander Heiden, MG ;
Thompson, CB ;
Schumacker, PT .
ONCOGENE, 2000, 19 (34) :3840-3848
[10]   The redox regulation of LMW-PTP during cell proliferation or growth inhibition [J].
Chiarugi, P .
IUBMB LIFE, 2001, 52 (1-2) :55-59