Bifurcation diagrams of population models with nonlinear, diffusion

被引:11
作者
Lee, Young He
Sherbakova, Lena
Taber, Jackie
Shi, Junping [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Harbin Normal Univ, Sch Math, Heilongjiang 150080, Peoples R China
基金
美国国家科学基金会;
关键词
global bifurcation; semilinear elliptic equation; nonlinear diffusion;
D O I
10.1016/j.cam.2005.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop analytical and numerical tools for the equilibrium solutions of a class of reaction-diffusion models with nonlinear diffusion rates. Such equations arise from population biology and material sciences. We obtain global bifurcation diagrams for various nonlinear diffusion functions and several growth rate functions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:357 / 367
页数:11
相关论文
共 22 条
[1]  
[Anonymous], 2001, INTERDISCIPLINARY AP
[2]  
[Anonymous], TOPOL METHODS NONLIN
[3]   Conditional persistence in logistic models via nonlinear diffusion [J].
Cantrell, RS ;
Cosner, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :267-281
[4]   DIFFUSIVE LOGISTIC EQUATIONS WITH INDEFINITE WEIGHTS - POPULATION-MODELS IN DISRUPTED ENVIRONMENTS .2. [J].
CANTRELL, RS ;
COSNER, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) :1043-1064
[5]  
Cantrell RS, 2003, SPATIAL ECOLOGY VIA
[6]  
Diaz J. I., 1985, Res. Notes Math., V106
[8]  
Logan R., 1997, DIFFERENTIAL INTEGRA, V10, P929
[9]   BIFURCATION STUDIES IN REACTION-DIFFUSION .2. [J].
MANORANJAN, VS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :307-314
[10]   BIFURCATION STUDIES IN REACTION-DIFFUSION [J].
MANORANJAN, VS ;
MITCHELL, AR ;
SLEEMAN, BD ;
YU, KP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (01) :27-37