Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels

被引:195
作者
Bryant, SJ
Chowdhury, TT
Lee, DA
Bader, DL
Anseth, KS [1 ]
机构
[1] Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
[3] Univ London Queen Mary Coll, Dept Engn, IRC Biomed Mat, London E1 4NS, England
[4] Univ London Queen Mary Coll, Dept Engn, Med Engn Div, London E1 4NS, England
关键词
cartilage; tissue engineering; photopolymerization; dynamic loading; hydrogel properties; crosslinking density;
D O I
10.1023/B:ABME.0000017535.00602.ca
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In approaches to tissue engineer articular cartilage, an important consideration for in situ forming cell carriers is the impact of mechanical loading on the cell composite structure and function. Photopolymerized hydrogel scaffolds based on poly(ethylene glycol) (PEG) may be synthesized with a range of crosslinking densities and corresponding macroscopic properties. This study tests the hypothesis that changes in the hydrogel crosslinking density influences the metabolic response of encapsulated chondrocytes to an applied load. PEG hydrogels were formulated with two crosslinking densities that resulted in gel compressive moduli ranging from 60 to 670 kPa. When chondrocytes were encapsulated in these PEG gels, an increase in crosslinking density resulted in an inhibition in cell proliferation and proteoglycan synthesis. Moreover, when the gels were dynamically loaded for 48 h in unconfined compression with compressive strains oscillating from 0 to 15% at a frequency of 1 Hz, cell proliferation and proteoglycan synthesis were affected in a crosslinking-density-dependent manner. Cell proliferation was inhibited in both crosslinked gels, but was greater in the highly crosslinked gel. In contrast, dynamic loading did not influence proteoglycan synthesis in the loosely crosslinked gel, but a marked decrease in proteoglycan production was observed in the highly crosslinked gel. In summary, changes in PEG hydrogel properties greatly affect how chondrocytes respond to an applied dynamic load.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 50 条
[1]   VARIATIONS IN THE INTRINSIC MECHANICAL PROTERTIES OF HUMAN ARTICULAR-CARTILAGE WITH AGE, DEGENERATION, AND WATER-CONTENT [J].
ARMSTRONG, CG ;
MOW, VC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1982, 64 (01) :88-94
[2]   DIFFERENCES BETWEEN SUB-POPULATIONS OF CULTURED BOVINE ARTICULAR CHONDROCYTES .1. MORPHOLOGY AND CARTILAGE MATRIX PRODUCTION [J].
AYDELOTTE, MB ;
KUETTNER, KE .
CONNECTIVE TISSUE RESEARCH, 1988, 18 (03) :205-222
[3]   A STUDY OF THE STRUCTURAL RESPONSE OF WET HYALINE CARTILAGE TO VARIOUS LOADING SITUATIONS [J].
BROOM, ND ;
MYERS, DB .
CONNECTIVE TISSUE RESEARCH, 1980, 7 (04) :227-237
[4]   Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro [J].
Bryant, SJ ;
Nuttelman, CR ;
Anseth, KS .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (05) :439-457
[5]   Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (01) :63-72
[6]   The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
BIOMATERIALS, 2001, 22 (06) :619-626
[7]  
BUCKWALTER JA, 1997, ENCY HUMAN BIOL, P431
[8]   EFFECT OF COMPREHENSIVE LOADING AND UNLOADING ON THE SYNTHESIS OF TOTAL PROTEIN, PROTEOGLYCAN, AND FIBRONECTIN BY CANINE CARTILAGE EXPLANTS [J].
BURTONWURSTER, N ;
VERNIERSINGER, M ;
FARQUHAR, T ;
LUST, G .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1993, 11 (05) :717-729
[9]   Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow [J].
Buschmann, MD ;
Kim, YJ ;
Wong, M ;
Frank, E ;
Hunziker, EB ;
Grodzinsky, AJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1999, 366 (01) :1-7
[10]   CHONDROCYTES IN AGAROSE CULTURE SYNTHESIZE A MECHANICALLY FUNCTIONAL EXTRACELLULAR-MATRIX [J].
BUSCHMANN, MD ;
GLUZBAND, YA ;
GRODZINSKY, AJ ;
KIMURA, JH ;
HUNZIKER, EB .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1992, 10 (06) :745-758