Conjugate gradient and Lanczos methods for sparse matrices on distributed memory multiprocessors

被引:4
作者
Basermann, A
机构
[1] Ctrl. Inst. for Appl. Math. (ZAM), Res. Centre Jülich GmbH (KFA), 52425, Jülich
关键词
D O I
10.1006/jpdc.1997.1364
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Conjugate gradient methods for solving sparse systems of linear equations and Lanczos algorithms for sparse symmetric eigenvalue problems play an important role in numerical methods for solving discretized partial differential equations, When these iterative solvers are parallelized on a multiprocessor system with distributed memory, the data distribution and the communication scheme-depending on the data structures used for the sparse coefficient matrices-are crucial for efficient execution. Here, data distribution and communication schemes are presented that are based on the analysis of the indices of the nonzero matrix elements, On an Intel PARAGON XP/S 10 with 140 processors, the developed parallel variants of the solvers show good scaling behavior for matrices with different sparsity patterns stemming from real finite element applications. (C) 1997 Academic Press.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 6 条
[1]   VECTORIZATION AND PARALLELIZATION OF THE CONJUGATE-GRADIENT ALGORITHM ON HYPERCUBE-CONNECTED VECTOR PROCESSORS [J].
AYKANAT, C ;
OZGUNER, F ;
SCOTT, DS .
MICROPROCESSING AND MICROPROGRAMMING, 1990, 29 (02) :67-82
[2]   A PARALLEL ALGORITHM FOR DETERMINING ALL EIGENVALUES OF LARGE REAL SYMMETRICAL TRIDIAGONAL MATRICES [J].
BASERMANN, A ;
WEIDNER, P .
PARALLEL COMPUTING, 1992, 18 (10) :1129-1141
[3]   S-STEP ITERATIVE METHODS FOR SYMMETRIC LINEAR-SYSTEMS [J].
CHRONOPOULOS, AT ;
GEAR, CW .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 25 (02) :153-168
[4]  
Cullum J. K., 1985, LANCZOS ALGORITHMS L, V1
[5]   A CLASS OF LANCZOS-LIKE ALGORITHMS IMPLEMENTED ON PARALLEL COMPUTERS [J].
KIM, SK ;
CHRONOPOULOS, AT .
PARALLEL COMPUTING, 1991, 17 (6-7) :763-778
[6]  
VEREECKEN H, 1993, 500393