Role of amino acids in insulin signaling in adipocytes and their potential to decrease insulin resistance of adipose tissue

被引:34
作者
Hinault, Charlotte [1 ]
Van Obberghen, Emmanuel [1 ]
Mothe-Satney, Sabelle [1 ]
机构
[1] Inst Federat Rech, INSERM, Unite 145, IFR 50, F-06107 Nice 02, France
关键词
amino acids; PKB/mTOR pathway; glucose transport; adipocyte; insulin resistance;
D O I
10.1016/j.jnutbio.2006.02.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, our knowledge concerning the role of amino acids in signal transduction in mammals has greatly improved. This significant advance is mainly due to the remarkable discovery that the mammalian target of rapamycin (mTOR) protein kinase, known to be activated in response to a large number of hormones, growth factors and cytokines, is also under the tight control of branched-chain amino acids. Actually, both inputs are necessary to fully activate the mTOR pathway, the main function of which is to increase cell size, via the regulation of translational processes. However, amino acids are able to modulate other biological effects and appear to have unexpected actions, as evidenced by our recent work in rat adipocytes. The aim of this review is to summarize novel findings on the role of mTOR and amino acids in insulin signaling in adipocytes. A possible beneficial impact of the use of amino acids in the treatment of insulin resistance is discussed, and hypotheses about the molecular mechanisms underlying their effect are proposed. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:374 / 378
页数:5
相关论文
共 36 条
[1]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[2]   Recent advances in the regulation of the TOR pathway by insulin and nutrients [J].
Avruch, J ;
Lin, YS ;
Long, XM ;
Murthy, S ;
Ortiz-Vega, S .
CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2005, 8 (01) :67-72
[3]   Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: Regulation by amino acid concentrations [J].
Bogan, JS ;
Mckee, AE ;
Lodish, HF .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (14) :4785-4806
[4]   Insulin activates the α isoform of class II phosphoinositide 3-kinase [J].
Brown, RA ;
Domino, J ;
Arcaro, A ;
Waterfield, MD ;
Shepherd, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (21) :14529-14532
[5]   Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002 [J].
Brunn, GJ ;
Williams, J ;
Sabers, C ;
Wiederrecht, G ;
Lawrence, JC ;
Abraham, RT .
EMBO JOURNAL, 1996, 15 (19) :5256-5267
[6]   hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase [J].
Byfield, MP ;
Murray, JT ;
Backer, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (38) :33076-33082
[7]   Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation [J].
Carlson, CJ ;
White, MF ;
Rondinone, CM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 316 (02) :533-539
[8]   Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling [J].
Gao, XS ;
Zhang, Y ;
Arrazola, P ;
Hino, O ;
Kobayashi, T ;
Yeung, RS ;
Ru, BG ;
Pan, DJ .
NATURE CELL BIOLOGY, 2002, 4 (09) :699-704
[9]   Positive and negative regulation of insulin signaling through IRS-1 phosphorylation [J].
Gual, P ;
Le Marchand-Brustel, Y ;
Tanti, JF .
BIOCHIMIE, 2005, 87 (01) :99-109
[10]   MAP kinases and mTOR mediate insulin-induced phosphorylation of Insulin Receptor Substrate-1 on serine residues 307, 612 and 632 [J].
Gual, P ;
Grémeaux, T ;
Gonzalez, T ;
Le Marchand-Brustel, Y ;
Tanti, JF .
DIABETOLOGIA, 2003, 46 (11) :1532-1542