Dynamical network model of infective mobile agents

被引:78
作者
Frasca, Mattia
Buscarino, Arturo
Rizzo, Alessandro
Fortuna, Luigi
Boccaletti, Stefano
机构
[1] Univ Catania, Dipartimento Ingn Elettr Elettron & Sistemi, I-95125 Catania, Italy
[2] Politecn Bari, Dipartimento Elettrotecn & Elettron, I-70125 Bari, Italy
[3] CNR Ist Sistemi Complessi, I-50019 Florence, Italy
关键词
D O I
10.1103/PhysRevE.74.036110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A dynamical network (consisting of a time-evolving wiring of interactions among a group of random walkers) is introduced to model the spread of an infectious disease in a population of mobile individuals. We investigate the main properties of this model, and show that peculiar features arise when individuals are allowed to perform long-distance jumps. Such peculiarities are captured and conveniently quantified by a series of appropriate parameters able to highlight the structural differences emerging in the networks when long-distance jumps are combined with local random walk processes.
引用
收藏
页数:5
相关论文
共 16 条
[1]  
Belykh I. G., 2004, PHYSICA D, V195
[2]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[3]   Dynamical network interactions in distributed control of robots [J].
Buscarino, A ;
Fortuna, L ;
Frasca, M ;
Rizzo, A .
CHAOS, 2006, 16 (01)
[4]   Scaling of the propagation of epidemic in a system of mobile agents [J].
González, MC ;
Herrmann, HJ .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (04) :741-748
[5]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653
[6]   Forecast and control of epidemics in a globalized world [J].
Hufnagel, L ;
Brockmann, D ;
Geisel, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (42) :15124-15129
[7]   Networks and epidemic models [J].
Keeling, MJ ;
Eames, KTD .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2005, 2 (04) :295-307
[8]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[9]   Epidemic outbreaks in complex heterogeneous networks [J].
Moreno, Y ;
Pastor-Satorras, R ;
Vespignani, A .
EUROPEAN PHYSICAL JOURNAL B, 2002, 26 (04) :521-529
[10]   Threshold effects for two pathogens spreading on a network [J].
Newman, MEJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (10)