Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes

被引:394
作者
Scovazzo, P [1 ]
Kieft, J
Finan, DA
Koval, C
DuBois, D
Noble, R
机构
[1] Univ Mississippi, Dept Chem Engn, University, MS 38677 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[4] Natl Renewable Energy Lab, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
liquid membranes; gas separations;
D O I
10.1016/j.memsci.2004.02.033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Previously, we reported on using Room temperature ionic liquids (RTILs) in place of traditional solvents for supported liquid membranes to take advantage of their unique properties. This previous work used RTILs with the hexafluorophosphate [PF6](-) anion. However, the [PF6]anion in the presence of water can break down into HE In the current work, we studied RTIL-membranes made from the following water stable anions: bis(trifluoromethanesulfonyl)amide [Tf2N](-), trifluoromethanesulfone [CF3SO3](-), chloride [Cl](-)(,) and dicyanamide [dca]-. We report CO2 permeabilities of 350 barrers (for [Cl](-)) to 1000 barters (for [Tf2N](-)) combined with CO2/N-2 ideal selectivities of 15 (for [Cl](-)) to 61 (for [dca](-)). Note that these permeability/selectivities place RTIL-membranes above the upper-bound in a CO2/N-2 Robeson plot of representative polymers. The CO2/CH4 ideal selectivities range from 4 (for [Cl](-)) to 20 (for [dca](-)), thereby placing the [dca]-membrane above the upper-bound for the CO2/CH4 Robeson plot. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 63
页数:7
相关论文
共 20 条
[1]   Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate [J].
Anthony, JL ;
Maginn, EJ ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (29) :7315-7320
[2]   CO2 capture by a task-specific ionic liquid [J].
Bates, ED ;
Mayton, RD ;
Ntai, I ;
Davis, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (06) :926-927
[3]   High-pressure phase behavior of ionic liquid/CO2 systems [J].
Blanchard, LA ;
Gu, ZY ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (12) :2437-2444
[4]   Recovery of organic products from ionic liquids using supercritical carbon dioxide [J].
Blanchard, LA ;
Brennecke, JF .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (01) :287-292
[5]   Hydrophobic, highly conductive ambient-temperature molten salts [J].
Bonhote, P ;
Dias, AP ;
Papageorgiou, N ;
Kalyanasundaram, K ;
Gratzel, M .
INORGANIC CHEMISTRY, 1996, 35 (05) :1168-1178
[6]  
Cussler E. L., 2009, DIFFUSION MASS TRANS
[7]   Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J].
Huddleston, JG ;
Visser, AE ;
Reichert, WM ;
Willauer, HD ;
Broker, GA ;
Rogers, RD .
GREEN CHEMISTRY, 2001, 3 (04) :156-164
[8]   Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction [J].
Huddleston, JG ;
Willauer, HD ;
Swatloski, RP ;
Visser, AE ;
Rogers, RD .
CHEMICAL COMMUNICATIONS, 1998, (16) :1765-1766
[9]   AN EQUATION FOR VAPOR-PRESSURE AND ITS APPLICATION TO MOLTEN-SALTS [J].
IIDA, T ;
KITA, Y ;
MORITA, Z .
ISIJ INTERNATIONAL, 1993, 33 (01) :75-78
[10]   Combining ionic liquids and supercritical fluids:: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures [J].
Kazarian, SG ;
Briscoe, BJ ;
Welton, T .
CHEMICAL COMMUNICATIONS, 2000, (20) :2047-2048