In this study, we examined whether ischemia-induced amyloidogenesis could be modulated by environmental "experience,'' and whether this modulation is associated with improved cognitive functioning. Rats were subjected to either global ischemia or sham surgery and then were randomly assigned to either enriched environment housing (EE) or socially paired housing (controls). After 14 days of differential environmental housing, the rats were tested in the water maze. Our results show decreased C-terminal fragments of the beta-amyloid precursor protein (beta APP) and decreased amyloid beta (A beta) load in the ischemic EE rats compared to the ischemic control animals. In addition, A beta oligomerization was significantly decreased in the ischemic EE animals compared to the ischemic control rats. Further, significantly increased levels of neprilysin, but not insulin-degrading enzyme, amyloid-degrading enzymes, were seen in the ischemic EE rats compared to the ischemic control animals. Behavioral analyses showed that ischemic EE rats performed significantly better on the memory task compared to the ischemic control group. These results suggest that use of multi-sensory environmental enrichment following cerebral ischemia may reduce the accumulation of A beta peptide in the more pathologic oligomeric form, and consequently may enhance functional recovery.